Optimization based power system stabilizer tuning

2021 ◽  
Vol 69 (5) ◽  
pp. 376-388
Author(s):  
Ara Panosyan

Abstract The most cost-effective method to improve the damping of low frequency electromechanical oscillations in interconnected power systems is the use of Power System Stabilizers (PSS), which act as supplementary controllers in the generator excitation system. In general, the performance of a power system stabilizer depends on the proper tuning of its parameters, to ensure a positive contribution to the small signal stability of the power system, without negatively impacting its transient stability. This paper will discuss the different roles of the excitation system automatic voltage regulator and the power system stabilizer in improving the transient stability and the oscillatory stability of the power system. The focus of the paper will be on the tuning methodology for power system stabilizers, which can ensure a robust performance of the PSS over a wide range of frequencies and operating conditions. In addition, mathematical optimization techniques will be introduced into the tuning process to improve the efficiency and accuracy of the tuning process.

Author(s):  
G. Fusco ◽  
M. Russo

This paper proposes a simple design procedure to solve the problem of controlling generator transient stability following large disturbances in power systems. A state-feedback excitation controller and power system stabilizer are designed to guarantee robustness against uncertainty in the system parameters. These controllers ensure satisfactory swing damping and quick decay of the voltage regulation error over a wide range of operating conditions. The controller performance is evaluated in a case study in which a three-phase short-circuit fault near the generator terminals in a four-bus power system is simulated.


Author(s):  
Ahmad Adel Alsakati ◽  
Chockalingam Aravind Vaithilingam ◽  
Jamal Alnasseir ◽  
Arthanari Jagadeeshwaran

2012 ◽  
Vol 23 (1) ◽  
pp. 59-81
Author(s):  
Riad Al-Mustfa Riad Al-Mustfa

In this paper, a new formula of Power System Stabilizer (PSS) was adopted. The design of PSS and Excitation system (an Exciter) parameters is formulated as an optimization problem. A continuous genetic algorithm (GA) is employed for searching optimized parameters. A multi-objective function includes the deviation in the oscillatory rotor speed of the generator is minimized in time-domain to improve the stability performance of the system. The design is performed using linearized models of a real thermal power system, Al-Zara Thermal Power Station in Syria, at four operating conditions and large perturbation. A cubic Hermite interpolation technique is employed to determine the smoothest possible curve that passes through its data set obtained by the GA. The effectiveness and robustness of the designed stabilizer is investigated and compared with conventional PSS. The simulation results show that the GA stabilizer (GAPSS + GAExciter) are able to provide better damping over a wide operating range with large perturbation and improve the overall systems’ performance.


2021 ◽  
Vol 2120 (1) ◽  
pp. 012022
Author(s):  
Abumuslim Khujaev ◽  
Chockalingam Aravind Vaithilingam ◽  
Ahmad Adel Alsakati ◽  
Jamal Alnasseir

Abstract Stability of power system is an ability of an electric power system that reaches its stable condition after fault happens in its network. The system is unstable when one generator loses its stable synchronism performance. This paper investigates the transient stability of an IEEE 9-bus system during faults that happen in different bus locations. Additionally, the analysis contributes to the integration of the exciter IEEE type-1 for synchronous generator and integration of power system stabilizer (PSS) to improve the power angle stability in the power system. The fault at bus 4 has the highest amplitude in which it increases to 77.58 degrees for the power angle of Synchronous Generators (SGs). The absence of PSS showed that the existing system oscillated and it is unstable. However, the integration of PSS enables the system to damp the oscillations of power angle and reduce the settling time to 5.69 seconds during the fault at bus 4. Moreover, the PSS is connected to SGs through the excitation system to improve the stability of the system in relative power angle of SGs, speed deviation, and electrical power of SGs. Hence, the integration of PSS and excitation system enhances the transient stability of the power system.


Author(s):  
Raja Nivedha. R ◽  
Sreevidya. L ◽  
V. Geetha ◽  
R. Deepa

The main objective of this paper is to improve the critical clearing time of the Steel Plant 35 MW Turbo generator. In order to enhance the transient behavior of the system, Power System Stabilizer is added so that proper damping is done. Damping intra area and inter area oscillations are critical to optimal power flow and stability on a system. Power system stabilizer is an effective damping device, as they provide auxiliary control signals to the excitation system of the generator. Transient stability analysis was carried out for the Steel plant. The three phase to ground and line to ground fault was simulated. The critical clearing time was found to be more when Power System Stabilizer was added and when Power System Stabilizer was not added the critical clearing time has considerably reduced.


Author(s):  
Bidyadhar Rout ◽  
B.B. Pati ◽  
S. Panda

This paper studies the improvement of transient stability of a single-Machine Infinite-Bus (SMIB) power system using Proportional Derivative (PD) type Static Synchronous Series Compensator (SSSC) and damping controllers. The design problem has been considered as optimisation problem and a modified version of recently proposed Sine Cosine Algorithm (SCA) has been employed for determining the optimal controller parameters. Proposed modified SCA (mSCA) algorithm is first tested using bench mark test functions and compared with SCA, and other heuristic evolutionary optimization algorithms like Grey Wolf optimization (GWO), Particle Swarm optimization (PSO), Gravitational Search algorithm (GSA) and Differential Evolution algorithm to show its superiority. The proposed mSCA algorithm is then applied to optimize simultaneously the PD type lead lag controller parameters pertaining to SSSC and power system stabilizer(PSS). The proposed controller provides sufficient damping for power system oscillation in different operating conditions and disturbances. Results analysis reveal that proposed mSCA technique provides higher effectiveness and robustness in damping oscillations of the power system and increases the dynamic stability more.


2018 ◽  
Vol 7 (4) ◽  
pp. 17-55 ◽  
Author(s):  
Dasu Butti ◽  
Siva Kumar Mangipudi ◽  
Srinivasarao Rayapudi

In this article, a multi objective and a novel objective based Power System Stabilizer (PSS) design is proposed for a modified Heffron - Philiphs model (MHP) using bio inspired algorithms. A conventional Heffron – Philphs (CHP) model is developed by taking infinite bus voltage as reference, whereas MHP model is developed by taking transformer high voltage bus voltage as reference, which makes independent of external system data for the PSS design. PSS parameters are optimized using differential evolution (DE) algorithm and Firefly (FF) algorithm to obtain better dynamic response. The proposed method is tested on various operating conditions under different typical disturbances to test efficacy and robustness. Simulation results prove that better dynamic performance is obtained with the proposed stabilizers over the fixed gain stabilizers. This method of tuning would become a better alternative to conventional stabilizers as conventional stabilizers require retuning of parameters mostly when operating condition changes, which is a time-consuming process and laborious. Eigen value analysis is also done to prove the efficacy of the proposed method over the conventional methods.


2020 ◽  
Vol 27 (4) ◽  
pp. 70-86
Author(s):  
firas AlDurze ◽  
sura Abdullah

The basic aim of the power system stabilizer is to damp the fluctuations that occur on the rotating axis of the synchronous generator that result from noise or disturbance on the power system. This is achieved by producing an appropriate damping torque for these fluctuations across the excitation circuit of the generator and for a wide range of operation conditions. The study describes the types of power system stabilizers and giving an mathematical model of the power system that consists of a synchronous machine connected to the infinite bus though transmission lines. This has been achieved by simulating the electric and mechanical equations of power systems and proposing a methodological approach to design a Fuzzy Logic Power System Stabilize (FPSS) relaying in the design on the (Matlab/Fuzzy logic toolbox).Speed deviation (Δω) and acceleration (∆ώ) of the synchronous machine are chosen as the input signals to the fuzzy controller in order to achieve a good dynamic performance .The complete range for the variation of each of the two controller inputs is represented by a 7×7 decision table, i.e. 49 rules using proportional derivative like fuzzy logic. The power system (SMIB) was tested with the presence and absence of the excitation system, then (CPSS) was added, and then (FPSS).The simulation results of the proposed fuzzy logic on )SMIB( gave a better dynamic response, decreased the settling time and good performance of the stabilizer in damping the fluctuations that arise in the speed of rotation of the generator and its active power in various operating conditions when proposed (FPSS) is compared with conventional PSS. The simulation results proved the superior performance of the proposed (FPSS).


Sign in / Sign up

Export Citation Format

Share Document