scholarly journals Ethanol production from brown seaweed using non-conventional yeasts

Bioethanol ◽  
2016 ◽  
Vol 2 (1) ◽  
Author(s):  
Oluwatosin Obata ◽  
Joseph Akunna ◽  
Heike Bockhorn ◽  
Graeme Walker

AbstractThe use of macroalgae (seaweed) as a potential source of biofuels has attracted considerable worldwide interest. Since brown algae, especially the giant kelp, grow very rapidly and contain considerable amounts of polysaccharides, coupled with low lignin content, they represent attractive candidates for bioconversion to ethanol through yeast fermentation processes. In the current study, powdered dried seaweeds (Ascophylum nodosum and Laminaria digitata) were pre-treated with dilute sulphuric acid and hydrolysed with commercially available enzymes to liberate fermentable sugars. Higher sugar concentrations were obtained from L. digitata compared with A. nodosum with glucose and rhamnose being the predominant sugars, respectively, liberated from these seaweeds. Fermentation of the resultant seaweed sugars was performed using two non-conventional yeast strains: Scheffersomyces (Pichia) stipitis and Kluyveromyces marxianus based on their abilities to utilise a wide range of sugars. Although the yields of ethanol were quite low (at around 6 g/L), macroalgal ethanol production was slightly higher using K. marxianus compared with S. stipitis. The results obtained demonstrate the feasibility of obtaining ethanol from brown algae using relatively straightforward bioprocess technology, together with non-conventional yeasts. Conversion efficiency of these non-conventional yeasts could be maximised by operating the fermentation process based on the physiological requirements of the yeasts.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Christos Katsaros ◽  
Sophie Le Panse ◽  
Gillian Milne ◽  
Carl J. Carrano ◽  
Frithjof Christian Küpper

Abstract The objective of the present study is to examine the fine structure of vegetative cells of Laminaria digitata using both chemical fixation and cryofixation. Laminaria digitata was chosen due to its importance as a model organism in a wide range of biological studies, as a keystone species on rocky shores of the North Atlantic, its use of iodide as a unique inorganic antioxidant, and its significance as a raw material for the production of alginate. Details of the fine structural features of vegetative cells are described, with particular emphasis on the differences between the two methods used, i.e. conventional chemical fixation and freeze-fixation. The general structure of the cells was similar to that already described, with minor differences between the different cell types. An intense activity of the Golgi system was found associated with the thick external cell wall, with large dictyosomes from which numerous vesicles and cisternae are released. An interesting type of cisternae was found in the cryofixed material, which was not visible with the chemical fixation. These are elongated structures, in sections appearing tubule-like, close to the external cell wall or to young internal walls. An increased number of these structures was observed near the plasmodesmata of the pit fields. They are similar to the “flat cisternae” found associated with the forming cytokinetic diaphragm of brown algae. Their possible role is discussed. The new findings of this work underline the importance of such combined studies which reveal new data not known until now using the old conventional methods. The main conclusion of the present study is that cryofixation is the method of choice for studying Laminaria cytology by transmission electron microscopy.


2010 ◽  
Vol 171-172 ◽  
pp. 261-265
Author(s):  
Zhuang Zuo ◽  
Xiu Shan Yang

Corn stover was pretreated using different soaking conditions at mild temperature. Among the tested conditions, the best was 1% NaOH+8% NH4OH,50°C,48 h, Solid-to-liquid ratio 1:10. The results showed that soaking pretreatment achieved 63.6% delignification, retained the xylan and glucan. After enzymatic hydrolysis, conversion rates of xylan and glucan were 70.9% and 78.5%, respectively. The pretreated filtration re-soaking cause 52.7% xylan and 65.0% glucan conversion. NaOH+NH4OH treatment can be performed under mild conditions, gives a good buffering effect, low carbohydates degradation and extensive removal of lignin. Additionally, simultaneous saccharification and fermentation was conducted with pretreated corn stover to assess the ethanol production. For the whole process, 0.15g ethanol /g corn stover was achieved using Saccharomyces cerevisiae Y5, and 0.19g ethanol /g corn stover when using Pichia stipitis.


3 Biotech ◽  
2013 ◽  
Vol 3 (5) ◽  
pp. 345-352 ◽  
Author(s):  
Sabrina E. Martiniano ◽  
Anuj K. Chandel ◽  
Luma C. S. R. Soares ◽  
Fernando C. Pagnocca ◽  
Sílvio S. da Silva

2009 ◽  
Vol 107 (6) ◽  
pp. 636-640 ◽  
Author(s):  
Hong Wu ◽  
Tomoko Watanabe ◽  
Yoshio Araki ◽  
Hiroshi Kitagaki ◽  
Takeshi Akao ◽  
...  

2016 ◽  
Vol 39 (7) ◽  
pp. 1023-1032 ◽  
Author(s):  
C. C. Okonkwo ◽  
M. M. Azam ◽  
T. C. Ezeji ◽  
N. Qureshi

BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 8662-8676
Author(s):  
Maria Mushtaq ◽  
Muhammad Javaid Asad ◽  
Muhammad Zeeshan Hyder ◽  
Syed Muhammad Saqlan Naqvi ◽  
Saad Imran Malik ◽  
...  

Utilization of biomass for production of second generation bioethanol was considered as a way to reduce burdens of fossil fuel in Pakistan. The materials wheat straw, rice straw, cotton stalk, corn stover, and peel wastes were used in this experiment. Various parameters, such as acidic and alkali pretreatment, enzymatic hydrolysis by cellulases, and effect of proteases inhibitors on ethanol production, were examined. Fermentation was completed by the yeasts Saccharomyces cerevisiae and Clostridium thermocellum separately, and their ethanol production were compared and maximum ethanol yield was obtained with wheat straw i.e.,11.3 g/L by S. cerevisiae and 8.5 g/L by C. thermocellum. Results indicated that a higher quantity of sugar was obtained from wheat straw (19.6 ± 1.6 g/L) followed by rice straw (17.6 ± 0.6 g/L) and corn stover (16.1 ± 0.9 g/L) compared to the other evaluated biomass samples. A higher yield of ethanol (11.3 g/L) was observed when a glucose concentration of 21.7 g/L was used, for which yeast fermentation efficiency was 92%. Results also revealed the increased in ethanol production (93%) by using celluases in combination with recombinant Serine protease inhibitors from C. thermocellum. It is expected that the use of recombinant serpins with cellulases will play a major role in the biofuel production by using agricultural biomass. This will also help in the economics of the biofuel.


Sign in / Sign up

Export Citation Format

Share Document