scholarly journals Application of extrusion-cooking technology in hatchery waste management

2020 ◽  
Vol 15 (1) ◽  
pp. 572-579
Author(s):  
Aldona Sobota ◽  
Piotr Zarzycki ◽  
Anna Wirkijowska ◽  
Zbigniew Rzedzicki ◽  
Agnieszka Pawlas

AbstractThe purpose of the present study was to examine the extrusion-cooking process of cereal blends with addition of hatchery waste (HW). The effect of HW addition on the physical properties and chemical composition of the extrudates was examined. The share of the HW in blends with corn meal was variable in the range of 5–30%. The study was conducted using a counter-rotating twin-screw extruder (L:D ratio 12:1, screw speed 75 rpm, die diameters 3 mm × 6 mm, profile of barrel temperature 120/140/180/180/130°C, and material moisture 28%). Increase in the content of the HW from 5 to 30% reduced the expansion ratio, pellet durability index, water absorption index, and water solubility index of the extrudates. The microstructure of the extrudates with HW addition is non-homogeneous; the areas with densely packed and adherent granules, interwoven with fibrous structures, can be observed. Increase in the share of HW leads to a lowering of the levels of crude fiber and total dietary fiber in the extrudates. Moreover, a significant increase in the content of protein, crude fat, and mineral elements such as calcium, sodium, magnesium, and iron was observed.

2017 ◽  
Vol 13 (2) ◽  
pp. 100-103
Author(s):  
Anneli Falk ◽  
Anja Fuhrmann ◽  
Kirsten Jacke ◽  
Joachim J. Schmitt

2014 ◽  
Vol 3 (6) ◽  
pp. 107 ◽  
Author(s):  
Sushil K. Singh ◽  
K. Muthukumarappan

<p>Nutritionally balanced ingredient blends for catla (<em>Catla catla</em>), belonging to the family Cyprinidae, were extruded using single screw extruder. The extrusion was carried out at five levels of soy white flakes content (21%, 29%, 40%, 52%, and 59% db), five levels of moisture content (15, 19, 25, 31, and 35% db) and five levels of barrel temperature (100, 110, 125, 140, and 150 ºC) using three different die nozzles (having L/D ratios 3.33, 5.83, and 7.25). Blends with net protein content of 32.5% contains soy white flakes, along with high protein distillers dried grains (HP-DDG), corn flour, corn gluten meal, fish meal, vitamin, and mineral mix. A central composite rotatable design (CCRD) and  response surface methodology (RSM) was used to investigate the significance of independent and interaction effects of the extrusion process variables on the extrudates physical properties namely pellet durability index, bulk density, water absorption and solubility indices and expansion ratio. Quadratic polynomial regression equations were developed to correlate the product responses and process variables as well as to obtain the response surfaces plots. The independent variables had significant (<em>P </em>&lt; 0.05) effects on physical properties of extrudates: (i) higher soy white flakes content increased the pellet durability index and water absorption index, but decreased the water solubility index, (ii) higher temperature decreased pellet durability index, bulk density and water solubility index, (iii) increased L/D ratio from 3.33 to 7.25 increased the pellet durability index, expansion ratio but decreased the bulk density of the extrudates.</p>


Materials ◽  
2005 ◽  
Author(s):  
Han-Xiong Huang ◽  
Jian-Kang Wang

Polymeric nanocomposites exhibit high potential as a new material for carbon dioxide (CO2) foaming. In this paper, a polypropylene (PP)/nano-calcium carbonate (nano-CaCO3) composite was selected to investigate the relationship between nanocomposite morphology and foam morphology. Nanocomposites were prepared using a twin-screw extruder with screw including both shearing and mixing elements. Nanocomposites with different morphology via changing the nano-CaCO3 content were then foamed by using supercritical CO2 in a batch system. Effect of nano-CaCO3 content on the volume expansion ratio, and cell coalescence were studied.


2007 ◽  
Vol 73 (5) ◽  
pp. 905-915 ◽  
Author(s):  
MASAHIKO KITAGAWA ◽  
TOSHIYUKI IIDA ◽  
HIROKI SAEKI

2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Nahemiah Danbaba ◽  
Iro Nkama ◽  
Mamudu Halidu Badau

In this study, seventeen (17) composite blends of broken rice fractions and full-fat soybean, formulated using response surface methodology and central composite design within a range of barrel temperatures (100-140 °C), initial feed moisture content (15-25%) and soybean composition (8-24%), were extruded with a twin-screw extruder and the expansion and color indices were optimized. The results indicated a significant (p<0.05) effect of extrusion conditions on the responses. Fitted predictive models had coefficients of 88.9%, 95.7%, 97.3%, 95.4% and 95.2%, respectively, for expansion index, bulk density, lightness, redness and yellowness. The p-value and lack-of-fit tests of the models could well explain the observed variability and therefore could be used to establish production setting for the twin-screw extruder. The optimum extrusion conditions were found to be 130 °C (barrel temperature), 20% (feed moisture level) and 23% feed soybean composition and optimum responses in terms of bulk density, expansion index, lightness, redness and yellowness chroma indices were 0.21 g cm-3, 128.9%, 17.1, 3.13 and 24.5 respectively. This indicates that optimum conditions can be established in twin-screw extrusion cooking of broken rice fractions and full-fat soybean composite blends that can result in product of low bulk and maximum expansion with a satisfactory light yellow product color that can be used to produce products that valorize broken rice and reduce qualitative postharvest loss.


Foods ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 183 ◽  
Author(s):  
Jazmin L. Tobias-Espinoza ◽  
Carlos A. Amaya-Guerra ◽  
Armando Quintero-Ramos ◽  
Esther Pérez-Carrillo ◽  
María A. Núñez-González ◽  
...  

The addition of flaxseed and amaranth on the physicochemical, functional, and microstructural changes of instant-extruded products was evaluated. Six mixtures with different proportions of amaranth (18.7–33.1%), flaxseed (6.6–9.3%), maize grits (55.6–67.3%) and minor ingredients (4.7%) were extruded in a twin-screw extruder. Insoluble and soluble fiber contents in extrudates increased as the proportions of amaranth and flaxseed increased. However, the highest flaxseed proportion had the highest soluble fiber content (1.9%). Extruded products with the highest proportion of flaxseed and amaranth resulted in the highest dietary fiber content and hardness values (5.2 N), which was correlated with the microstructural analysis where the crystallinity increased, resulting in larger, and more compact laminar structure. The extruded products with the highest maize grits proportion had the highest viscosity, expansion, and water absorption indexes, and the lowest water solubility index values. The mixtures with amaranth (18.7–22.9%), flaxseed (8.6–9.3%), and maize grits (63.8–67.3%) resulted in extruded products with acceptable physicochemical and functional properties.


Foods ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 958 ◽  
Author(s):  
Antonella Pasqualone ◽  
Michela Costantini ◽  
Teodora Emilia Coldea ◽  
Carmine Summo

The traditional perception that legumes would not be suitable for extrusion cooking is now completely outdated. In recent years, an increasing number of studies have been conducted to assess the behavior of various types of legume flours in extrusion cooking, proving that legumes have excellent potential for the production of extruded ready-to-eat foods by partially or totally replacing cereals. This review identifies the optimal processing conditions for legume-based and legume-added extruded foods, which allow the improvement of the expansion ratio and give the extrudates the spongy and crisp structure expected by consumers. In particular, the effect of the individual processing parameters on the physical-chemical and nutritional properties of the final product is highlighted. The extrusion cooking process, indeed, has a positive effect on nutritional characteristics, because it induces important modifications on starch and proteins, enhancing their digestibility, and reduces the content of trypsin inhibitors, lectins, phytic acid, and tannins, typically present in legumes. Therefore, the extrusion of legume flours is a viable strategy to improve their nutritional features while reducing home preparation time, so as to increase the consumption of these sustainable crops.


Sign in / Sign up

Export Citation Format

Share Document