Epigenetic revival of a dead cardiomyocyte through mitochondrial interventions

2015 ◽  
Vol 6 (4) ◽  
pp. 303-319 ◽  
Author(s):  
George H. Kunkel ◽  
Pankaj Chaturvedi ◽  
Suresh C. Tyagi

AbstractMitochondrial dysfunction has been reported to underline heart failure, and our earlier report suggests that mitochondrial fusion and fission contributes significantly to volume overload heart failure. Although ample studies highlight mitochondrial dysfunction to be a major cause, studies are lacking to uncover the role of mitochondrial epigenetics, i.e. epigenetic modifications of mtDNA in cardiomyocyte function. Additionally, mitochondrial proteases like calpain and Lon proteases are underexplored. Cardiomyopathies are correlated to mitochondrial damage via increased reactive oxygen species production and free calcium within cardiomyocytes. These abnormalities drive increased proteolytic activity from matrix metalloproteinases and calpains, respectively. These proteases degrade the cytoskeleton of the cardiomyocyte and lead to myocyte death. mtDNA methylation is another factor that can lead to myocyte death by silencing several genes of mitochondria or upregulating the expression of mitochondrial proteases by hypomethylation. Cardiomyocyte resuscitation can occur through mitochondrial interventions by decreasing the proteolytic activity and reverting back the epigenetic changes in the mtDNA which lead to myocyte dysfunction. Epigenetic changes in the mtDNA are triggered by environmental factors like pollution and eating habits with cigarette smoking. An analysis of mitochondrial epigenetics in cigarette-smoking mothers will reveal an underlying novel mechanism leading to mitochondrial dysfunction and eventually heart failure. This review is focused on the mitochondrial dysfunction mechanisms that can be reverted back to resuscitate cardiomyocytes.

2009 ◽  
Vol 56 (S 01) ◽  
Author(s):  
M Schwarzer ◽  
A Schrepper ◽  
P Amorim ◽  
G Pytel ◽  
FW Mohr ◽  
...  

Author(s):  
Sicong Yu ◽  
Lepeng Gao ◽  
Yang Song ◽  
Xin Ma ◽  
Shuang Liang ◽  
...  

Abstract Mitochondria play an important role in controlling oocyte developmental competence. Our previous studies showed that glycine can regulate mitochondrial function and improve oocyte maturation in vitro. However, the mechanisms by which glycine affects mitochondrial function during oocyte maturation in vitro have not been fully investigated. In this study, we induced a mitochondrial damage model in oocytes with the Bcl-2-specific antagonist ABT-199. We investigated whether glycine could reverse the mitochondrial dysfunction induced by ABT-199 exposure and whether it is related to calcium regulation. Our results showed that ABT-199 inhibited cumulus expansion, decreased the oocyte maturation rate and the intracellular glutathione (GSH) level, caused mitochondrial dysfunction, induced oxidative stress, which was confirmed by decreased mitochondrial membrane potential (Δ⍦m) and the expression of mitochondrial function-related genes (PGC-1α), and increased reactive oxygen species (ROS) levels and the expression of apoptosis-associated genes (Bax, caspase-3, CytC). More importantly, ABT-199-treated oocytes showed an increase in the intracellular free calcium concentration ([Ca 2+]i) and had impaired cortical type 1 inositol 1,4,5-trisphosphate receptors (IP3R1) distribution. Nevertheless, treatment with glycine significantly ameliorated mitochondrial dysfunction, oxidative stress and apoptosis, glycine also regulated [Ca 2+]i levels and IP3R1 cellular distribution, which further protects oocyte maturation in ABT-199-induced porcine oocytes. Taken together, our results indicate that glycine has a protective action against ABT-199-induced mitochondrial dysfunction in porcine oocytes.


Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1306
Author(s):  
Filippo Pirrotta ◽  
Benedetto Mazza ◽  
Luigi Gennari ◽  
Alberto Palazzuoli

Congestion related to cardiac pressure and/or volume overload plays a central role in the pathophysiology, presentation, and prognosis of heart failure (HF). Most HF exacerbations are related to a progressive rise in cardiac filling pressures that precipitate pulmonary congestion and symptomatic decompensation. Furthermore, persistent symptoms and signs of congestion at discharge or among outpatients are strong predictors of an adverse outcome. Pulmonary congestion is also one of the most important diagnostic and therapeutic targets in chronic heart failure. The aim of this review is to analyze the importance of clinical, instrumental, and biochemical evaluation of congestion in HF by describing old and new tools. Lung ultrasonography (LUS) is an emerging method to assess pulmonary congestion. Accordingly, we describe the additive prognostic role of chest ultrasound with respect to traditional clinical and X-ray assessment in acute and chronic HF setting.


2021 ◽  
Author(s):  
Bálint Károly Lakatos ◽  
Mihály Ruppert ◽  
Márton Tokodi ◽  
Attila Oláh ◽  
Szilveszter Braun ◽  
...  

2011 ◽  
Vol 4 (4) ◽  
pp. 463-473 ◽  
Author(s):  
Zaid A. Abassi ◽  
Yaron D. Barac ◽  
Sawa Kostin ◽  
Ariel Roguin ◽  
Elena Ovcharenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document