Automatic analysis of image quality by ETR-1 for the On-Board Imager

2020 ◽  
Vol 65 (1) ◽  
pp. 99-105
Author(s):  
Shamim Ahmed ◽  
Marian Krüger ◽  
Christian Willomitzer ◽  
Golam Abu Zakaria

AbstractThe test-plate image of an image quality test tool is processed. The processing is based on quality assurance with the well-established test device ETR-1. A program is developed to analyze the parameters such as contrast, low contrast and resolution automatically. This results in more accurate patient positioning for the On-Board Imager (OBI) system. The contrast and resolution are measured by means of Bresenham’s line algorithm. The low contrast is calculated with the help of binary masking. The modulation transfer function (MTF) is also observed for the system. The developed program imports the Digital Imaging and Communications in Medicine (DICOM) image and returns the image parameters. The program can process the ideal image or the less noisy image. The no-rotation-mode or the slight-rotation-mode of the test-plate can be analyzed.

BJR|Open ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 20190044
Author(s):  
Hywel Mortimer-Roberts ◽  
Michael R Rees

Objective: To determine whether the use of display matrix magnification on larger operator screens without the use of conventional magnification can reduce radiation dose to the patient, and what effect it would have on image quality. Methods: The kerma-area product (KAP) resulting from standard projections in cardiac angiography were measured when an anthropomorphic phantom was imaged using conventional magnification method and display matrix magnification. The image quality was also evaluated by three observers using a TOR 18FG test tool for both magnification method. Results: The mean radiation KAP for the seven views with conventional magnification was 36.65 µGy m−2 whilst a reduction in KAP of 20.4% is possible using display matrix magnification (p < 0.05). The image resolution during acquisition was identical between both methods and only slightly reduced for the display matrix (1.6 LP mm−1) compared to conventional magnification (1.8 LP mm−1) when images were stored and retrieved on a Picture Archiving and Communication Systems (PACS) system. Both methods retained the same low-contrast detectability to PACS, with only a slight increase in detectability of 18 for display matrix magnification compared to 17 for conventional. Conclusion: Using display matrix magnification instead of conventional equipment magnification significantly reduces radiation does in all standard cardiac views without reducing image quality for the operator. This reduction in radiation dose is significant (p < 0.05) for the patients. The resolution did not change during acquisition, but contrast improved slightly (0.9% threshold contrast), but lost resolution of 0.2 LP mm−1 when archived to PACS. Advances in knowledge: This is a new method of reducing significant dose to the patient during cardiology examinations and may encourage further studies in other fluoroscopy lead examination to see if it could work for them.


2016 ◽  
Vol 2 (1) ◽  
pp. 489-491
Author(s):  
Shamim Ahmed ◽  
Marian Krüger ◽  
Christian Willomitzer ◽  
Golam A. Zakaria

AbstractIn this work, we developed a method to handle the image quality test-tool precisely. This test-tool is important to evaluate the quality of the medical images for pre-treatment planning phase. But the achieved images are estimated by naked eyes, which does not provide the precise result. Our main goal is to get the desired image parameters numerically. This numerical estimation overcomes the limitation of naked eye observation. Hence, it enhances the pre-treatment planning. The ETR-1 test-tool is considered here. The contrast, the low contrast details and line-pairs (lp/mm) were estimated.


Author(s):  
Babak Alikhani ◽  
Julius Renne ◽  
Sabine Maschke ◽  
Jan B. Hinrichs ◽  
Frank K. Wacker ◽  
...  

Purpose To evaluate the influence of patient alignment and thereby heel effect on the image quality (IQ) of C-arm flat-panel detector computed tomography (CACT). Materials and Methods An ACR phantom placed in opposite directions along the z-axis (setup A and B) on the patient support was imaged using CACT. Image acquisition was performed with three different image acquisition protocols. The images were reconstructed with four convolution kernels. IQ was assessed in terms of high contrast using the modulation transfer function (MTF) and low contrast by assessing the image noise, signal-to-noise ratio (SNR) and contrast-to-noise ratios (CNR) as well as the reliability of density measurements. Furthermore, the dose intensity profiles were measured free-in-air. Results The MTF in setup B is higher than the MTF measured in setup A (p < 0.01). The image noises measured in setup A for the air and bone inserts were higher compared to those measured in setup B (p > 0.05). Opposite behavior has been observed for the polyethylene, water-equivalent and acrylic inserts. The SNR for all inserts is inversely related to the image noise. A systematically increasing or decreasing trend of CNR could not be observed (p > 0.05). The intensity profile measured by the detector system free-in-air showed that the anode heel effect is perpendicular to the z-axis. Conclusion The patient alignment has a minor influence on the IQ of CACT. This effect is not based on the X-ray anode heel effect but is caused mainly by the non-symmetrical rotation of CACT. Key Points:  Citation Format


2010 ◽  
Vol 9 (3) ◽  
pp. 165-174
Author(s):  
Denise Irvine ◽  
Mark McJury

AbstractBackground and purpose: Following a recent major upgrade in cone-beam computed tomography (CBCT) software and functionality, we have reassessed aspects of our Varian Acuity simulator performance for use in treatment planning. The feasibility of using CBCT for treatment planning has been assessed and here we report specifically on Hounsfield number (HN) accuracy and related dose errors, and digitally reconstructed radiograph (DRR) image quality.Methods: Using a Catphan® 600 CT phantom, HN accuracy and uniformity were investigated for a range of CBCT imaging modes. This included the variation in HNs with scan length and phantom position. Results were compared with those acquired from conventional CT. Treatment plans for three sites were generated using the Rando phantom, and results from CBCT-based data were compared to that from CT-based data using a gamma analysis. Image quality of DRRs based on CBCT data were compared with those from CT data both quantitatively, by calculating the modulation transfer function (MTF) and qualitatively, by counting the number of line pairs visible on a phantom.Results and conclusions: Catphan data showed that for certain cases, the HN calibration of the Acuity CBCT was out of tolerance and could lead to errors in dose calculation of >2%. HNs were only acceptable for scan lengths >10 cm. In multi-scan mode, geometric shifts and differences in HNs were seen on CT slices on either side of the interface between the two acquisitions. However, comparisons between treatment plans calculated using CBCT data and conventional CT data from Rando phantoms showed that head, pelvis and thorax plans were acceptable. CBCT DRR image quality compared favourably with a conventional CT scanner in some respects; however, image uniformity and low contrast resolution were poorer due to the ‘cupping’ artefact obtained with CBCT scans.


Author(s):  
Sultan Aldosari ◽  
Zhonghua Sun

Background: The aim of this study is to perform a systematic review of the feasibility and clinical application of double low-dose CT pulmonary angiography (CTPA) in the diagnosis of patients with suspected pulmonary embolism. Discussion: A total of 13 studies were found to meet selection criteria reporting both low radiation dose (70 or 80 kVp versus 100 or 120 kVp) and low contrast medium dose CTPA protocols. Lowdose CTPA resulted in radiation dose reduction from 29.6% to 87.5% in 12 studies (range: 0.4 to 23.5 mSv), while in one study, radiation dose was increased in the dual-energy CT group when compared to the standard 120 kVp group. CTPA with use of low contrast medium volume (range: 20 to 75 ml) was compared to standard CTPA (range: 50 to 101 ml) in 12 studies with reduction between 25 and 67%, while in the remaining study, low iodine concentration was used with 23% dose reduction achieved. Quantitative assessment of image quality (in terms of signal-to-noise ratio and contrast-to-noise ratio) showed that low-dose CTPA was associated with higher, lower and no change in image quality in 3, 3 and 6 studies, respectively when compared to the standard CTPA protocol. The subjective assessment indicated similar image quality in 11 studies between low-dose and standard CTPA groups, and improved image quality in 1 study with low-dose CTPA. Conclusion: This review shows that double low-dose CTPA is feasible in the diagnosis of pulmonary embolism with significant reductions in both radiation and contrast medium doses, without compromising diagnostic image quality.


2020 ◽  
Author(s):  
Lucas R. V. Messias ◽  
Cristiano R. Steffens ◽  
Paulo L. J. Drews-Jr ◽  
Silvia S. C. Botelho

Image enhancement is a critical process in imagebased systems. In these systems, image quality is a crucial factor to achieve a good performance. Scenes with a dynamic range above the capability of the camera or poor lighting are challenging conditions, which usually result in low contrast images, and, with that, we can have the underexposure and/or overexposure problem. In this work, our aim is to restore illexposed images. For this purpose, we present UCAN, a small and fast learning-based model capable to restore and enhance poorly exposed images. The obtained results are evaluated using image quality indicators which show that the proposed network is able to improve images damaged by real and simulated exposure. Qualitative and quantitative results show that the proposed model outperforms the existing models for this objective.


Author(s):  
Juliane Conzelmann ◽  
Ulrich Genske ◽  
Arthur Emig ◽  
Michael Scheel ◽  
Bernd Hamm ◽  
...  

Abstract Objectives To evaluate the effects of anatomical phantom structure on task-based image quality assessment compared with a uniform phantom background. Methods Two neck phantom types of identical shape were investigated: a uniform type containing 10-mm lesions with 4, 9, 18, 30, and 38 HU contrast to the surrounding area and an anatomically realistic type containing lesions of the same size and location with 10, 18, 30, and 38 HU contrast. Phantom images were acquired at two dose levels (CTDIvol of 1.4 and 5.6 mGy) and reconstructed using filtered back projection (FBP) and adaptive iterative dose reduction 3D (AIDR 3D). Detection accuracy was evaluated by seven radiologists in a 4-alternative forced choice experiment. Results Anatomical phantom structure impaired lesion detection at all lesion contrasts (p < 0.01). Detectability in the anatomical phantom at 30 HU contrast was similar to 9 HU contrast in uniform images (91.1% vs. 89.5%). Detection accuracy decreased from 83.6% at 5.6 mGy to 55.4% at 1.4 mGy in uniform FBP images (p < 0.001), whereas AIDR 3D preserved detectability at 1.4 mGy (80.7% vs. 85% at 5.6 mGy, p = 0.375) and was superior to FBP (p < 0.001). In the assessment of anatomical images, superiority of AIDR 3D was not confirmed and dose reduction moderately affected detectability (74.6% vs. 68.2%, p = 0.027 for FBP and 81.1% vs. 73%, p = 0.018 for AIDR 3D). Conclusions A lesion contrast increase from 9 to 30 HU is necessary for similar detectability in anatomical and uniform neck phantom images. Anatomical phantom structure influences task-based assessment of iterative reconstruction and dose effects. Key Points • A lesion contrast increase from 9 to 30 HU is necessary for similar low-contrast detectability in anatomical and uniform neck phantom images. • Phantom background structure influences task-based assessment of iterative reconstruction and dose effects. • Transferability of CT assessment to clinical imaging can be expected to improve as the realism of the test environment increases.


Sign in / Sign up

Export Citation Format

Share Document