Matching pursuit algorithm for enhancing EEG signal quality and increasing the accuracy and efficiency of emotion recognition

2020 ◽  
Vol 65 (4) ◽  
pp. 393-404
Author(s):  
Ali Momennezhad

AbstractIn this paper, we suggest an efficient, accurate and user-friendly brain-computer interface (BCI) system for recognizing and distinguishing different emotion states. For this, we used a multimodal dataset entitled “MAHOB-HCI” which can be freely reached through an email request. This research is based on electroencephalogram (EEG) signals carrying emotions and excludes other physiological features, as it finds EEG signals more reliable to extract deep and true emotions compared to other physiological features. EEG signals comprise low information and signal-to-noise ratios (SNRs); so it is a huge challenge for proposing a robust and dependable emotion recognition algorithm. For this, we utilized a new method, based on the matching pursuit (MP) algorithm, to resolve this imperfection. We applied the MP algorithm for increasing the quality and SNRs of the original signals. In order to have a signal of high quality, we created a new dictionary including 5-scale Gabor atoms with 5000 atoms. For feature extraction, we used a 9-scale wavelet algorithm. A 32-electrode configuration was used for signal collection, but we used just eight electrodes out of that; therefore, our method is highly user-friendly and convenient for users. In order to evaluate the results, we compared our algorithm with other similar works. In average accuracy, the suggested algorithm is superior to the same algorithm without applying MP by 2.8% and in terms of f-score by 0.03. In comparison with corresponding works, the accuracy and f-score of the proposed algorithm are better by 10.15% and 0.1, respectively. So as it is seen, our method has improved past works in terms of accuracy, f-score and user-friendliness despite using just eight electrodes.

2021 ◽  
Vol 15 ◽  
Author(s):  
Yanling An ◽  
Shaohai Hu ◽  
Xiaoying Duan ◽  
Ling Zhao ◽  
Caiyun Xie ◽  
...  

As one of the key technologies of emotion computing, emotion recognition has received great attention. Electroencephalogram (EEG) signals are spontaneous and difficult to camouflage, so they are used for emotion recognition in academic and industrial circles. In order to overcome the disadvantage that traditional machine learning based emotion recognition technology relies too much on a manual feature extraction, we propose an EEG emotion recognition algorithm based on 3D feature fusion and convolutional autoencoder (CAE). First, the differential entropy (DE) features of different frequency bands of EEG signals are fused to construct the 3D features of EEG signals, which retain the spatial information between channels. Then, the constructed 3D features are input into the CAE constructed in this paper for emotion recognition. In this paper, many experiments are carried out on the open DEAP dataset, and the recognition accuracy of valence and arousal dimensions are 89.49 and 90.76%, respectively. Therefore, the proposed method is suitable for emotion recognition tasks.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Lin Gan ◽  
Mu Zhang ◽  
Jiajia Jiang ◽  
Fajie Duan

People are ingesting various information from different sense organs all the time to complete different cognitive tasks. The brain integrates and regulates this information. The two significant sensory channels for receiving external information are sight and hearing that have received extensive attention. This paper mainly studies the effect of music and visual-auditory stimulation on electroencephalogram (EEG) of happy emotion recognition based on a complex system. In the experiment, the presentation was used to prepare the experimental stimulation program, and the cognitive neuroscience experimental paradigm of EEG evoked by happy emotion pictures was established. Using 93 videos as natural stimuli, fMRI data were collected. Finally, the collected EEG signals were removed with the eye artifact and baseline drift, and the t-test was used to analyze the significant differences of different lead EEG data. Experimental data shows that, by adjusting the parameters of the convolutional neural network, the highest accuracy of the two-classification algorithm can reach 98.8%, and the average accuracy can reach 83.45%. The results show that the brain source under the combined visual and auditory stimulus is not a simple superposition of the brain source of the single visual and auditory stimulation, but a new interactive source is generated.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7103
Author(s):  
Heekyung Yang ◽  
Jongdae Han ◽  
Kyungha Min

Electroencephalogram (EEG) biosignals are widely used to measure human emotional reactions. The recent progress of deep learning-based classification models has improved the accuracy of emotion recognition in EEG signals. We apply a deep learning-based emotion recognition model from EEG biosignals to prove that illustrated surgical images reduce the negative emotional reactions that the photographic surgical images generate. The strong negative emotional reactions caused by surgical images, which show the internal structure of the human body (including blood, flesh, muscle, fatty tissue, and bone) act as an obstacle in explaining the images to patients or communicating with the images with non-professional people. We claim that the negative emotional reactions generated by illustrated surgical images are less severe than those caused by raw surgical images. To demonstrate the difference in emotional reaction, we produce several illustrated surgical images from photographs and measure the emotional reactions they engender using EEG biosignals; a deep learning-based emotion recognition model is applied to extract emotional reactions. Through this experiment, we show that the negative emotional reactions associated with photographic surgical images are much higher than those caused by illustrated versions of identical images. We further execute a self-assessed user survey to prove that the emotions recognized from EEG signals effectively represent user-annotated emotions.


2020 ◽  
Vol 6 (3) ◽  
pp. 255-287
Author(s):  
Wanrou Hu ◽  
Gan Huang ◽  
Linling Li ◽  
Li Zhang ◽  
Zhiguo Zhang ◽  
...  

Emotions, formed in the process of perceiving external environment, directly affect human daily life, such as social interaction, work efficiency, physical wellness, and mental health. In recent decades, emotion recognition has become a promising research direction with significant application values. Taking the advantages of electroencephalogram (EEG) signals (i.e., high time resolution) and video‐based external emotion evoking (i.e., rich media information), video‐triggered emotion recognition with EEG signals has been proven as a useful tool to conduct emotion‐related studies in a laboratory environment, which provides constructive technical supports for establishing real‐time emotion interaction systems. In this paper, we will focus on video‐triggered EEG‐based emotion recognition and present a systematical introduction of the current available video‐triggered EEG‐based emotion databases with the corresponding analysis methods. First, current video‐triggered EEG databases for emotion recognition (e.g., DEAP, MAHNOB‐HCI, SEED series databases) will be presented with full details. Then, the commonly used EEG feature extraction, feature selection, and modeling methods in video‐triggered EEG‐based emotion recognition will be systematically summarized and a brief review of current situation about video‐triggered EEG‐based emotion studies will be provided. Finally, the limitations and possible prospects of the existing video‐triggered EEG‐emotion databases will be fully discussed.


2018 ◽  
Vol 7 (2) ◽  
pp. 279-285
Author(s):  
Sandy Akbar Dewangga ◽  
Handayani Tjandrasa ◽  
Darlis Herumurti

Brain-computer interfaces have been explored for years with the intent of using human thoughts to control mechanical system. By capturing the transmission of signals directly from the human brain or electroencephalogram (EEG), human thoughts can be made as motion commands to the robot. This paper presents a prototype for an electroencephalogram (EEG) based brain-actuated robot control system using mental commands. In this study, Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) method were combined to establish the best model. Dataset containing features of EEG signals were obtained from the subject non-invasively using Emotiv EPOC headset. The best model was then used by Brain-Computer Interface (BCI) to classify the EEG signals into robot motion commands to control the robot directly. The result of the classification gave the average accuracy of 69.06%.


2021 ◽  
Vol 8 (8) ◽  
pp. 201976
Author(s):  
Zhihang Tian ◽  
Dongmin Huang ◽  
Sijin Zhou ◽  
Zhidan Zhao ◽  
Dazhi Jiang

In recent years, more and more researchers have focused on emotion recognition methods based on electroencephalogram (EEG) signals. However, most studies only consider the spatio-temporal characteristics of EEG and the modelling based on this feature, without considering personality factors, let alone studying the potential correlation between different subjects. Considering the particularity of emotions, different individuals may have different subjective responses to the same physical stimulus. Therefore, emotion recognition methods based on EEG signals should tend to be personalized. This paper models the personalized EEG emotion recognition from the macro and micro levels. At the macro level, we use personality characteristics to classify the individuals’ personalities from the perspective of ‘birds of a feather flock together’. At the micro level, we employ deep learning models to extract the spatio-temporal feature information of EEG. To evaluate the effectiveness of our method, we conduct an EEG emotion recognition experiment on the ASCERTAIN dataset. Our experimental results demonstrate that the recognition accuracy of our proposed method is 72.4% and 75.9% on valence and arousal, respectively, which is 10.2% and 9.1% higher than that of no consideration of personalization.


2021 ◽  
Vol 17 ◽  
pp. 28-40
Author(s):  
Isah Salim Ahmad ◽  
Shuai Zhang ◽  
Sani Saminu ◽  
Lingyue Wang ◽  
Abd El Kader Isselmou ◽  
...  

Emotion recognition based on brain-computer interface (BCI) has attracted important research attention despite its difficulty. It plays a vital role in human cognition and helps in making the decision. Many researchers use electroencephalograms (EEG) signals to study emotion because of its easy and convenient. Deep learning has been employed for the emotion recognition system. It recognizes emotion into single or multi-models, with visual or music stimuli shown on a screen. In this article, the convolutional neural network (CNN) model is introduced to simultaneously learn the feature and recognize the emotion of positive, neutral, and negative states of pure EEG signals single model based on the SJTU emotion EEG dataset (SEED) with ResNet50 and Adam optimizer. The dataset is shuffle, divided into training and testing, and then fed to the CNN model. The negative emotion has the highest accuracy of 94.86% fellow by neutral emotion with 94.29% and positive emotion with 93.25% respectively. With average accuracy of 94.13%. The results showed excellent classification ability of the model and can improve emotion recognition.


Author(s):  
Fabian Parsia George ◽  
Istiaque Mannafee Shaikat ◽  
Prommy Sultana Ferdawoos Hossain ◽  
Mohammad Zavid Parvez ◽  
Jia Uddin

The recognition of emotions is a vast significance and a high developing field of research in the recent years. The applications of emotion recognition have left an exceptional mark in various fields including education and research. Traditional approaches used facial expressions or voice intonation to detect emotions, however, facial gestures and spoken language can lead to biased and ambiguous results. This is why, researchers have started to use electroencephalogram (EEG) technique which is well defined method for emotion recognition. Some approaches used standard and pre-defined methods of the signal processing area and some worked with either fewer channels or fewer subjects to record EEG signals for their research. This paper proposed an emotion detection method based on time-frequency domain statistical features. Box-and-whisker plot is used to select the optimal features, which are later feed to SVM classifier for training and testing the DEAP dataset, where 32 participants with different gender and age groups are considered. The experimental results show that the proposed method exhibits 92.36% accuracy for our tested dataset. In addition, the proposed method outperforms than the state-of-art methods by exhibiting higher accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5092
Author(s):  
Tran-Dac-Thinh Phan ◽  
Soo-Hyung Kim ◽  
Hyung-Jeong Yang ◽  
Guee-Sang Lee

Besides facial or gesture-based emotion recognition, Electroencephalogram (EEG) data have been drawing attention thanks to their capability in countering the effect of deceptive external expressions of humans, like faces or speeches. Emotion recognition based on EEG signals heavily relies on the features and their delineation, which requires the selection of feature categories converted from the raw signals and types of expressions that could display the intrinsic properties of an individual signal or a group of them. Moreover, the correlation or interaction among channels and frequency bands also contain crucial information for emotional state prediction, and it is commonly disregarded in conventional approaches. Therefore, in our method, the correlation between 32 channels and frequency bands were put into use to enhance the emotion prediction performance. The extracted features chosen from the time domain were arranged into feature-homogeneous matrices, with their positions following the corresponding electrodes placed on the scalp. Based on this 3D representation of EEG signals, the model must have the ability to learn the local and global patterns that describe the short and long-range relations of EEG channels, along with the embedded features. To deal with this problem, we proposed the 2D CNN with different kernel-size of convolutional layers assembled into a convolution block, combining features that were distributed in small and large regions. Ten-fold cross validation was conducted on the DEAP dataset to prove the effectiveness of our approach. We achieved the average accuracies of 98.27% and 98.36% for arousal and valence binary classification, respectively.


Sign in / Sign up

Export Citation Format

Share Document