scholarly journals Assessment of Polish Power System angular stability based on analysis of different disturbance waveforms

2015 ◽  
Vol 63 (2) ◽  
pp. 435-441
Author(s):  
P. Pruski ◽  
S. Paszek

Abstract The paper presents investigation results concerning assessment of the Polish Power System (PPS) angular stability based on power system state matrix eigenvalues associated with electromechanical phenomena, when using the angular stability factors calculated on the basis of these eigenvalues. The eigenvalues were calculated by analysis of the disturbance waveforms of the instantaneous power, angular speed and power angle of synchronous generators in PPS generating units when taking into account introduction of a disturbance to different units. There was assumed a disturbance in the form of a rectangular pulse introduced to the voltage regulation system of a generating unit. There was also analysed the effect of the duration of the introduced test disturbance on the calculation results of the eigenvalue influencing the measurement waveforms of the instantaneous power of generating unit no 5 in Rybnik Power Plant. The method for eigenvalue calculations used in the investigations consists in approximation of the disturbance waveforms in particular generating units with the use of the waveforms being a superposition of the modal components associated with the searched eigenvalues. The hybrid optimisation algorithm being a serial combination of the genetic and gradient algorithms was used for computations

2018 ◽  
Vol 41 ◽  
pp. 03013 ◽  
Author(s):  
Fedor Nepsha ◽  
Roman Belyaevsky

In this paper, the authors propose an algorithm for interrelated voltage regulation in the power supply system of coal mine which allows to provide a normative voltage level and to minimize the level of active power consumption. A feature of the proposed algorithm is a separate consideration of discrete and nondiscrete variables. Nondiscrete variables are represented as a state matrix. The optimization of nondiscrete variables is performed for each state. The algorithm chooses a state with the minimal active power consumption. The obtained values of discrete and nondiscrete variables are transferred in the form of control signals to voltage regulation devices. In this case, the periodicity of the switching is determined by the resource of the on-load tap-changing device. The use of this algorithm will theoretically allow increasing the energy efficiency of power supply systems of coal mines.


2014 ◽  
Vol 17 (2) ◽  
pp. 27-38 ◽  
Author(s):  
Quang Huu Vinh Luu

A new algorithm simulating the impact of asynchronous torque to the transient stability of multi-machine power system is mentioned and some typical numerical examples are presented in this article. Based on the proposed algorithm this PC program uses the elements of the eigen-image matrix to bring the specific advantages for the calculations of the transient stability of multi-machine power system.The symmetrical and unsymmetrical transient voltages of the VAR supporting devices such as the static var compensators, synchronous machines are simulated under condition of action of the automatic voltage regulation system and the transient frequencies relating to the action of the asynchronous torque are simulated for analyzing of the transient stability in multi-machine power system.


2016 ◽  
Vol 67 (1) ◽  
pp. 21-28
Author(s):  
Sebastian Berhausen ◽  
Stefan Paszek

Abstract In recent years, there have occurred system failures in many power systems all over the world. They have resulted in a lack of power supply to a large number of recipients. To minimize the risk of occurrence of power failures, it is necessary to perform multivariate investigations, including simulations, of power system operating conditions. To conduct reliable simulations, the current base of parameters of the models of generating units, containing the models of synchronous generators, is necessary. In the paper, there is presented a method for parameter estimation of a synchronous generator nonlinear model based on the analysis of selected transient waveforms caused by introducing a disturbance (in the form of a pseudorandom signal) in the generator voltage regulation channel. The parameter estimation was performed by minimizing the objective function defined as a mean square error for deviations between the measurement waveforms and the waveforms calculated based on the generator mathematical model. A hybrid algorithm was used for the minimization of the objective function. In the paper, there is described a filter system used for filtering the noisy measurement waveforms. The calculation results of the model of a 44 kW synchronous generator installed on a laboratory stand of the Institute of Electrical Engineering and Computer Science of the Silesian University of Technology are also given. The presented estimation method can be successfully applied to parameter estimation of different models of high-power synchronous generators operating in a power system.


2012 ◽  
Vol 60 (1) ◽  
pp. 125-131
Author(s):  
S. Paszek

Use of Pareto optimisation for tuning power system stabilizers The paper presents a method for determining sets of Pareto optimal solutions (compromise sets) - parameter values of PSS3B system stabilizers working in a multi-machine power system - when optimising different multidimensional criteria. These criteria are determined for concrete disturbances when taking into account transient waveforms of the instantaneous power, angular speed and terminal voltage of generators in one, chosen generating unit or in all units of the system analysed. The application of multi-criteria methods allows taking into account the optimisation process of power system stabilizer (PSS) parameters, many sometimes contradictory requirements (criteria) without losing ability to reach the optimal solution. A choice of the compromise solution can be made by assuming the values of the weighting coefficients associated with particular components of the vector criterion and determining the equivalent, global criterion. A change of the values of those weighting coefficients in the equivalent criterion does not require, in the case of the Pareto optimization, carrying out repeated calculations.


Author(s):  
G. Fusco ◽  
M. Russo

This paper proposes a simple design procedure to solve the problem of controlling generator transient stability following large disturbances in power systems. A state-feedback excitation controller and power system stabilizer are designed to guarantee robustness against uncertainty in the system parameters. These controllers ensure satisfactory swing damping and quick decay of the voltage regulation error over a wide range of operating conditions. The controller performance is evaluated in a case study in which a three-phase short-circuit fault near the generator terminals in a four-bus power system is simulated.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Mohammad Rasool Mojallizadeh ◽  
Bahram Karimi

The power electronic interface between a satellite electrical power system (EPS) with a photovoltaic main source and battery storage as the secondary power source is modelled based on the state space averaging method. Subsequently, sliding mode controller is designed for maximum power point tracking of the PV array and load voltage regulation. Asymptotic stability is ensured as well. Simulation of the EPS is accomplished using MATLAB. The results show that the outputs of the EPS have good tracking response, low overshoot, short settling time, and zero steady-state error. The proposed controller is robust to environment changes and load variations. Afterwards, passivity based controller is provided to compare the results with those of sliding mode controller responses. This comparison demonstrates that the proposed system has better transient response, and unlike passivity based controller, the proposed controller does not require reference PV current for control law synthesis.


Sign in / Sign up

Export Citation Format

Share Document