scholarly journals An overview of EFLM harmonization activities in Europe

2018 ◽  
Vol 56 (10) ◽  
pp. 1591-1597 ◽  
Author(s):  
Eric S. Kilpatrick ◽  
Sverre Sandberg

Abstract The European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) has initiated many harmonization activities in all phases of the examination process. The EFLM is dealing with both the scientific and the educational aspects of harmonization, with the intention of disseminating best practice in laboratory medicine throughout Europe. Priorities have been given (1) to establish a standard for conducting and assessing biological variation studies and to construct an evidence based EFLM webpage on biological variation data, (2) to harmonize preanalytical procedures by producing European guidelines, (3) to improve test ordering and interpretation, (4) to produce other common European guidelines for laboratory medicine and play an active part in development of clinical guidelines, (5) to establish a common basis for communicating laboratory results to patients, (6) to harmonize units of measurement throughout Europe, (7) to harmonize preanalytical procedures in molecular diagnostics and (8) to harmonize and optimize test evaluation procedures. The EFLM is also now launching the 5th version of the European Syllabus to help the education of European Specialists in Laboratory Medicine (EuSpLM), which is being supported by the development of e-learning courses. A register of EuSpLM is already established for members of National Societies in EU countries, and a similar register will be established for specialists in non-EU countries.

Author(s):  
Anna Carobene ◽  
Marta Strollo ◽  
Niels Jonker ◽  
Gerhard Barla ◽  
William A. Bartlett ◽  
...  

AbstractBackground:Biological variation (BV) data have many fundamental applications in laboratory medicine. At the 1st Strategic Conference of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) the reliability and limitations of current BV data were discussed. The EFLM Working Group on Biological Variation is working to increase the quality of BV data by developing a European project to establish a biobank of samples from healthy subjects to be used to produce high quality BV data.Methods:The project involved six European laboratories (Milan, Italy; Bergen, Norway; Madrid, Spain; Padua, Italy; Istanbul, Turkey; Assen, The Netherlands). Blood samples were collected from 97 volunteers (44 men, aged 20–60 years; 43 women, aged 20–50 years; 10 women, aged 55–69 years). Initial subject inclusion required that participants completed an enrolment questionnaire to verify their health status. The volunteers provided blood specimens once per week for 10 weeks. A short questionnaire was completed and some laboratory tests were performed at each sampling consisting of blood collected under controlled conditions to provide serum, KResults:Samples from six out of the 97 enroled subjects were discarded as a consequence of abnormal laboratory measurements. A biobank of 18,000 aliquots was established consisting of 120 aliquots of serum, 40 of EDTA-plasma, and 40 of citrated-plasma from each subject. The samples were stored at –80 °C.Conclusions:A biobank of well-characterised samples collected under controlled conditions has been established delivering a European resource to enable production of contemporary BV data.


Author(s):  
Anna Carobene ◽  
Aasne K. Aarsand ◽  
William A. Bartlett ◽  
Abdurrahman Coskun ◽  
Jorge Diaz-Garzon ◽  
...  

Abstract Biological variation (BV) data have many important applications in laboratory medicine. Concerns about quality of published BV data led the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) 1st Strategic Conference to indicate need for new studies to generate BV estimates of required quality. In response, the EFLM Working Group on BV delivered the multicenter European Biological Variation Study (EuBIVAS). This review summarises the EuBIVAS and its outcomes. Serum/plasma samples were taken from 91 ostensibly healthy individuals for 10 consecutive weeks at 6 European centres. Analysis was performed by Siemens ADVIA 2400 (clinical chemistry), Cobas Roche 8000, c702 and e801 (proteins and tumor markers/hormones respectively), ACL Top 750 (coagulation parameters), and IDS iSYS or DiaSorin Liaison (bone biomarkers). A strict preanalytical and analytical protocol was applied. To determine BV estimates with 95% CI, CV-ANOVA after analysis of outliers, homogeneity and trend analysis or a Bayesian model was applied. EuBIVAS has so far delivered BV estimates for 80 different measurands. Estimates for 10 measurands (Non-HDL Cholesterol, S100-β protein, neuron-specific enolase, soluble transferrin receptor, intact fibroblast growth-factor-23, uncarboxylated-unphosphorylated matrix-Gla protein, human epididymis protein-4, free, conjugated and %free prostate-specific antigen), prior to EuBIVAS, have not been available. BV data for creatinine and troponin I were obtained using two analytical methods in each case. The EuBIVAS has delivered high-quality BV data for a wide range of measurands. The BV estimates are for many measurands lower than those previously reported, having an impact on the derived analytical performance specifications and reference change values.


Author(s):  
William A. Bartlett ◽  
Federica Braga ◽  
Anna Carobene ◽  
Abdurrahman Coşkun ◽  
Richard Prusa ◽  
...  

AbstractData on biological variation are used for many purposes in laboratory medicine but concern exists over the validity of the data reported in some studies. A critical appraisal checklist has been produced by a working group established by the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) to enable standardised assessment of existing and future publications of biological variation data. The checklist identifies key elements to be reported in studies to enable safe accurate and effective transport of biological variation data sets across healthcare systems. The checklist is mapped to the domains of a minimum data set required to enable this process.


2018 ◽  
Vol 56 (10) ◽  
pp. 1629-1636 ◽  
Author(s):  
Aasne K. Aarsand ◽  
Thomas Røraas ◽  
William A. Bartlett ◽  
Abdurrahman Coşkun ◽  
Anna Carobene ◽  
...  

Abstract Biological variation (BV) data have many applications in laboratory medicine. However, concern has been raised that some BV estimates in use today may be irrelevant or of unacceptable quality. A number of initiatives have been launched by the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) and other parties to deliver a more harmonized practice in the generation, reporting and application of BV data. Resulting from a necessary focus upon the veracity of historical BV studies, critical appraisal and meta-analysis of published BV studies is possible through application of the Biological Variation Data Critical Appraisal Checklist (BIVAC), published in 2017. The BIVAC compliant large-scale European Biological Variation Study delivers updated high-quality BV data for a wide range of measurands. Other significant developments include the publication of a Medical Subject Heading term for BV and recommendations for common terminology for reporting of BV data. In the near future, global BV estimates derived from meta-analysis of BIVAC appraised publications will be accessible in a Biological Variation Database at the EFLM website. The availability of these high-quality data, which have many applications that impact on the quality and interpretation of clinical laboratory results, will afford improved patient care.


Author(s):  
Marc H.M. Thelen ◽  
Florent J.L.A. Vanstapel ◽  
Christos Kroupis ◽  
Ines Vukasovic ◽  
Guilaime Boursier ◽  
...  

AbstractThe recent revision of ISO15189 has further strengthened its position as the standard for accreditation for medical laboratories. Both for laboratories and their customers it is important that the scope of such accreditation is clear. Therefore the European co-operation for accreditation (EA) demands that the national bodies responsible for accreditation describe the scope of every laboratory accreditation in a way that leaves no room for doubt about the range of competence of the particular laboratories. According to EA recommendations scopes may be fixed, mentioning every single test that is part of the accreditation, or flexible, mentioning all combinations of medical field, examination type and materials for which the laboratory is competent. Up to now national accreditation bodies perpetuate use of fixed scopes, partly by inertia, partly out of fear that a too flexible scope may lead to over-valuation of the competence of laboratories, most countries only use fixed scopes. The EA however promotes use of flexible scopes, since this allows for more readily innovation, which contributes to quality in laboratory medicine. In this position paper, the Working Group Accreditation and ISO/CEN Standards belonging to the Quality and Regulation Committee of the EFLM recommends using an approach that has led to successful introduction of the flexible scope for ISO15189 accreditation as intended in EA-4/17 in The Netherlands. The approach is risk-based, discipline and competence-based, and focuses on defining a uniform terminology transferable across the borders of scientific disciplines, laboratories and countries.


Author(s):  
Ian D. Watson ◽  
Joanna Siodmiak ◽  
Wytze P. Oosterhuis ◽  
Joel Corberand ◽  
Per E. Jorgensen ◽  
...  

AbstractMedicine is a highly professionalized endeavour, by tradition centred on the authority of physicians. Better education and the advent of the information age cater for increased demands on society in general and on health care in particular to enable people to make informed decisions regarding themselves. Participation in medical decisions requires informed knowledge which is hard to obtain without substantial and time consuming professional help.We performed a survey amongst the member organizations of European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) in order to investigate the recognition and preparedness of providing help to patients in interpreting their laboratory results.Out of 40 EFLM Member Societies, 27 sent their responses to the survey. In most cases the first line delivery of laboratory results to physicians is by computer link (63%). Patients receive their laboratory results on demand from their physician in 60% of cases. However, 34% of laboratory specialists showed a negative attitude for delivering laboratory results to patients. Yet, in 48% of countries 1–5 patients per day ask a laboratory specialist about the significance of laboratory results outside the reference range. When patients are informed about the purpose of laboratory testing, they seek information primarily from their physician, followed by the internet and the Specialist in Laboratory Medicine.Changing practices increasingly enabling patient access to their records are on the increase facilitated by recent innovations in information technologies. Successful transfer of some of the responsibilities of physicians, demands a mutual triangular dialogue between the patient, their physician and laboratory medicine.


2017 ◽  
Vol 63 (9) ◽  
pp. 1527-1536 ◽  
Author(s):  
Anna Carobene ◽  
Irene Marino ◽  
Abdurrahman Coşkun ◽  
Mustafa Serteser ◽  
Ibrahim Unsal ◽  
...  

Abstract BACKGROUND The European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) European Biological Variation Study (EuBIVAS) has been established to deliver rigorously determined biological variation (BV) indices. EuBIVAS determined BV for serum creatinine using the enzymatic and alkaline picrate measurement methods. METHOD In total, 91 healthy individuals (38 males, 53 females; age range, 21–69 years) were bled for 10 consecutive weeks at 6 European laboratories. An equivalent protocol was followed at each center. Sera were stored at −80 °C before analysis. Analyses for each patient were performed in duplicate within a single run on an ADVIA 2400 system (San Raffaele Hospital, Milan). The data were subjected to outlier and homogeneity analysis before performing CV-ANOVA to determine BV and analytical variation (CVA) estimates with confidence intervals (CI). RESULTS The within-subject BV estimates [CVI (95% CI)] were similar for enzymatic [4.4% (4.2–4.7)] and alkaline picrate [4.7% (4.4–4.9)] methods and lower than the estimate presently available online (CVI = 5.9%). No significant male/female BV differences were found. Significant differences were observed in mean creatinine values between men and women and between Turkish individuals and those of other nationalities. Between-subject BV (CVG) estimates, stratified accordingly, produced CVG values similar to historical BV data. CVA was 1.1% for the enzymatic and 4.4% for alkaline picrate methods, indicating that alkaline picrate methods fail to fulfill analytical performance specifications for imprecision (CVAPS). CONCLUSIONS The serum creatinine CVI obtained by EuBIVAS specifies a more stringent CVAPS than previously identified. The alkaline picrate method failed to meet this CVAPS, raising questions regarding its future use.


Sign in / Sign up

Export Citation Format

Share Document