scholarly journals Updates on liquid biopsy: current trends and future perspectives for clinical application in solid tumors

Author(s):  
Pamela Pinzani ◽  
Valeria D’Argenio ◽  
Marzia Del Re ◽  
Cristina Pellegrini ◽  
Federico Cucchiara ◽  
...  

Abstract Despite advances in screening and therapeutics cancer continues to be one of the major causes of morbidity and mortality worldwide. The molecular profile of tumor is routinely assessed by surgical or bioptic samples, however, genotyping of tissue has inherent limitations: it represents a single snapshot in time and it is subjected to spatial selection bias owing to tumor heterogeneity. Liquid biopsy has emerged as a novel, non-invasive opportunity of detecting and monitoring cancer in several body fluids instead of tumor tissue. Circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), RNA (mRNA and microRNA), microvesicles, including exosomes and tumor “educated platelets” were recently identified as a source of genomic information in cancer patients which could reflect all subclones present in primary and metastatic lesions allowing sequential monitoring of disease evolution. In this review, we summarize the currently available information concerning liquid biopsy in breast cancer, colon cancer, lung cancer and melanoma. These promising issues still need to be standardized and harmonized across laboratories, before fully adopting liquid biopsy approaches into clinical practice.

The Analyst ◽  
2020 ◽  
Vol 145 (16) ◽  
pp. 5553-5562
Author(s):  
Jiawei Wang ◽  
Guanping Hua ◽  
Lihuang Li ◽  
Danyang Li ◽  
Fanfan Wang ◽  
...  

A rapid molecular diagnostic technique targeting circulating tumor DNA (ctDNA) has become one of the most clinically significant liquid biopsy methods for non-invasive and timely diagnosis of cancer.


2020 ◽  
Vol 66 (4) ◽  
pp. 391-397
Author(s):  
T. Sokolova ◽  
T. Laidus ◽  
R. Meerovich ◽  
K. Zagorodnev ◽  
Aleksandr Martyanov ◽  
...  

«Liquid biopsy» is gradually becoming a mandatory procedure in cancer diagnostics. The aim of this procedure is to detect and monitor tumor-specific markers in various body fluids (blood, urine, pleural fluid, etc.). Significant efforts have been made to convert the most common mutational tests (EGFR, KRAS, BRAF) into non-invasive procedures. Despite some advantages, “liquid biopsy” is still not equivalent to traditional tissue analysis due to limited sensitivity and specificity; it cannot be routinely used in cancer medicine until the standardization of pre-analytical procedures is agreed. We intend to improve the performance of liquid biopsy for detection of a number of clinically relevant mutations (EGFR: ex19del and L858R; KRAS: 12, 13, 61, 146 codon nucleotide substitutions; BRAF: V600E). 417 plasma samples obtained from 88 patients (KRAS/NRAS/BRAF-mutated colorectal cancer (CRC): n= 57; EGFR-mutated lung adenocarcinomas (LC): n = 14; BRAF-mutated melanoma: n = 17) were analyzed by ddPCR for the presence of corresponding mutations in the circulating tumor DNA (ctDNA). Presence of tumor-specific mutations in plasma was confirmed in 32/57 (56%) CRC, 7/14 (50%) LC, and 4/17 (24%) melanoma cases. The proportion of mutation-positive plasma cases was tended to be higher in the group of patients with distant metastases compared to subjects with localized disease [34/56 (61%) vs. 5/15 (33%), р = 0.058]. 86 patients provided their blood at 9.00 (morning) and at 16.00 (afternoon). In addition, blood-takes were performed before and 15 minutes after usual breakfast as well as before and 15 minutes after moderate physical exercise. The detection rate of cancer-specific mutations in plasma was not significantly correlated with described above circumstances of blood-take. Meanwhile, the noticeable intrapatient variability of circulating mutation success rate has been detected. Thus, depending on clinical circumstances, at least negative ctDNA tests could be advised to be repeated in some patients, in order to ensure the reliability of results.


2018 ◽  
Vol 19 (10) ◽  
pp. 2877 ◽  
Author(s):  
José Marrugo-Ramírez ◽  
Mònica Mir ◽  
Josep Samitier

Cancer is one of the greatest threats facing our society, being the second leading cause of death globally. Currents strategies for cancer diagnosis consist of the extraction of a solid tissue from the affected area. This sample enables the study of specific biomarkers and the genetic nature of the tumor. However, the tissue extraction is risky and painful for the patient and in some cases is unavailable in inaccessible tumors. Moreover, a solid biopsy is expensive and time consuming and cannot be applied repeatedly. New alternatives that overcome these drawbacks are rising up nowadays, such as liquid biopsy. A liquid biopsy is the analysis of biomarkers in a non-solid biological tissue, mainly blood, which has remarkable advantages over the traditional method; it has no risk, it is non-invasive and painless, it does not require surgery and reduces cost and diagnosis time. The most studied cancer non-invasive biomarkers are circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and exosomes. These circulating biomarkers play a key role in the understanding of metastasis and tumorigenesis, which could provide a better insight into the evolution of the tumor dynamics during treatment and disease progression. Improvements in isolation technologies, based on a higher grade of purification of CTCs, exosomes, and ctDNA, will provide a better characterization of biomarkers and give rise to a wide range of clinical applications, such as early detection of diseases, and the prediction of treatment responses due to the discovery of personalized tumor-related biomarkers.


Author(s):  
Annarita Perillo ◽  
Mohamed Vincenzo Agbaje Olufemi ◽  
Jacopo De Robbio ◽  
Rossella Margherita Mancuso ◽  
Anna Roscigno ◽  
...  

Lung cancer is the most common cancer and the leading cause of cancer mortality worldwide. To date, tissue biopsy has been the gold standard for the diagnosis and the identification of specific molecular mutations, to guide choice of therapy. However, this procedure has several limitations. Liquid biopsy could represent a solution to the intrinsic limits of traditional biopsy. It can detect cancer markers such as circulating tumor DNA or RNA (ctDNA, ctRNA), and circulating tumor cells, in plasma, serum or other biological fluids. This procedure is minimally invasive, reproducible and can be used repeatedly. The main clinical applications of liquid biopsy in non-small cell lung cancer (NSCLC) patients are the early diagnosis, stratification of the risk of relapse, identification of mutations to guide application of targeted therapy and the evaluation of the minimum residual disease. In this review, the current role of liquid biopsy and associated markers in the management of NSCLC patients was analyzed, with emphasis on ctDNA and CTCs, and radiotherapy.


2021 ◽  
Vol 156 (0) ◽  
pp. 1-7
Author(s):  
Atsushi Imai ◽  
Kiyoshi Misawa ◽  
Satoshi Yamada ◽  
Jun Okamura ◽  
Daiki Mochizuki ◽  
...  

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 3506-3506
Author(s):  
Andrea Sartore-Bianchi ◽  
Filippo Pietrantonio ◽  
Sara Lonardi ◽  
Benedetta Mussolin ◽  
Francesco Rua ◽  
...  

3506 Background: Despite advances in molecular segmentation of metastatic colorectal cancer (mCRC), beyond RAS status therapeutic actionability remains confined to the limited subgroups of ERBB2 amplified, BRAF mutated and MSI-H patients. Optimization of available treatments is therefore warranted. Rechallenge with anti-EGFR monoclonal antibodies is often empirically used with some benefit as late-line therapy. We previously found that mutant RAS and EGFR ectodomain clones, which emerge in blood during EGFR blockade, decline upon antibody withdrawal leading to regain drug sensitivity. Based on this rationale, we designed CHRONOS, a multicenter phase II trial of anti-EGFR therapy rechallenge guided by monitoring of the mutational status of RAS, BRAF and EGFR in circulating tumor DNA (ctDNA). To our knowledge, this is the first interventional clinical trial of liquid biopsy for driving anti-EGFR rechallenge therapy in mCRC. Methods: Eligible patients were PS ECOG 0-2 RAS/BRAF WT mCRC having first achieved an objective response and then progression in any treatment line with an anti-EGFR antibody containing regimen, displaying RAS, BRAF and EGFR ectodomain WT status in ctDNA at molecular screening after progression to the last anti-EGFR-free regimen. Clonal evolution in ctDNA was analyzed by ddPCR and next generation sequencing. Panitumumab 6 mg/kg was administered IV every two weeks until progression. The primary endpoint was objective response rate (ORR) by RECIST version 1.1 with independent central review. 27 total patients and 6 responses were required to declare the study positive (power = 85%, type I error = 0.05). Results: Between Aug 19, 2019 and Nov 6, 2020 52 patients were screened by liquid biopsy and 36 (69%) were negative in ctDNA for RAS/BRAF/EGFR mutations. Of these, 27 patients were enrolled in 4 centers. Median age was 64 years (range: 42-80). PS ECOG was 0/50%, 1/46%, 2/4%. Previous anti-EGFR was administered in 1st line in 63%, 2nd in 15% and > 2nd in 22%. Median number of previous treatments was 3. The primary endpoint was met, with 8/27 partial responses (PR) observed (2 unconfirmed) (ORR = 30%, 95% CI: 12-47%). Stable disease (SD) was obtained in 11/27 (40%, 95% CI: 24-59%), lasting > 4 months in 8/11. Disease control rate (PR plus SD > 4 months) was therefore obtained in 16/27 (59%, 95% CI: 41-78%). Median progression-free survival was 16 weeks. Median duration of response was 17 weeks (1 ongoing). Maximal grade toxicity was G3, limited to dermatological and occurring in 19% of patients. ctDNA dynamics were studied in all patients. Conclusions: Liquid biopsy-driven rechallenge with anti-EGFR antibodies leads to further objective responses in one third of patients. Genotyping tumor DNA in the blood to direct therapy can be effectively incorporated in the management of advanced CRCs. Clinical trial information: 2016-002597-12.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Anne-Katrin Hickmann ◽  
Maximilian Frick ◽  
Dirk Hadaschik ◽  
Florian Battke ◽  
Markus Bittl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document