scholarly journals IUPAC Top Ten Emerging Technologies in Chemistry 2021

2021 ◽  
Vol 43 (4) ◽  
pp. 13-20
Author(s):  
Gomollón-Bel Fernando

Abstract IUPAC thrives to boost the impact of chemistry around the world. Recently, it established a new initiative—the Top Ten Emerging Technologies in Chemistry—to showcase the tremendous importance of the chemical sciences by highlighting developments on the verge of becoming game-changing commercial breakthroughs [1]. Some have been truly transformational for our society, such as RNA vaccines and rapid tests, both key technologies to enable a smooth transition to the new normal after the COVID-19 pandemic. This year, the Top Ten efforts continue—featuring a brand-new logo and further actions to disseminate and promote the project beyond this publication. The new selection of emerging technologies gathers both well-established, high-technology readiness level (TRL) applications and ground-breaking opportunities for the chemical industry. Of course, many of them still address the ongoing coronavirus crisis, focusing on new pharmaceutical solutions to prevent the spread of pathogens like SARS-CoV-2. Moreover, many tackle the climate crisis and provide new roadmaps to achieve the United Nations’ Sustainable Development Goals (SDGs) [2]. The consequences of global warming are here—heatwaves, floods, and wildfires devastate our planet constantly. Chemistry will provide pivotal tools towards a sustainable future [3], many included in this singular selection. IUPAC experts have selected the Top Ten Emerging Technologies in Chemistry 2021—ten ideas to catalyse industrial innovations and transform our world.

Aerospace ◽  
2020 ◽  
Vol 7 (11) ◽  
pp. 163
Author(s):  
Fabrizio Stesina ◽  
Sabrina Corpino ◽  
Daniele Calvi

Miniaturized propulsion systems can enable many future CubeSats missions. The advancement of the Technology Readiness Level of this technology passes through the integration in a CubeSat platform and the assessment of the impact and the interactions of the propulsion systems on the actual CubeSat technology and vice versa. The request of power, the thermal environmental, and the electromagnetic emissions generated inside the platform require careful analyses. This paper presents the upgraded design and the validation of a CubeSat test platform (CTP) that can interface a wide range of new miniaturized propulsion systems and gather unprecedented information for these analyses, which can be fused with the commonly used ground support equipment. The CTP features are reported, and the main achievements of the tests are shown, demonstrating the effective capabilities of the platform and how it allows for the investigation of the mutual interactions at system level between propulsion systems and the CubeSat technology.


2021 ◽  
Vol 295 ◽  
pp. 126426
Author(s):  
Fernando Bruno Dovichi Filho ◽  
York Castillo Santiago ◽  
Electo Eduardo Silva Lora ◽  
José Carlos Escobar Palacio ◽  
Oscar Agustin Almazan del Olmo

2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110121
Author(s):  
David Portugal ◽  
André G Araújo ◽  
Micael S Couceiro

To move out of the lab, service robots must reveal a proven robustness so they can be deployed in operational environments. This means that they should function steadily for long periods of time in real-world areas under uncertainty, without any human intervention, and exhibiting a mature technology readiness level. In this work, we describe an incremental methodology for the implementation of an innovative service robot, entirely developed from the outset, to monitor large indoor areas shared by humans and other obstacles. Focusing especially on the reliability of the fundamental localization system of the robot in the long term, we discuss all the incremental software and hardware features, design choices, and adjustments conducted, and show their impact on the performance of the robot in the real world, in three distinct 24-h long trials, with the ultimate goal of validating the proposed mobile robot solution for indoor monitoring.


Author(s):  
V.R. Filimonova ◽  
A.V. Shushkov ◽  
D.S. Zmienko ◽  
M.U. Rabaev ◽  
G.S. Kuzmin ◽  
...  

In the world of continuous change and volatility, benefits and results of investments made by companies into research and development (R&D) projects have to be transparent for management of a company in order to make timely and appropriate investment decisions. The paper discusses prospects of post-implementation review of R&D projects, process complications the company faced and its interaction with key related processes of the technology strategy: diffusion among affiliated companies, education and commercialization. Any technology project strives to deliver both technological and economic benefits to a company. While technological success is usually the focus of a project manager, the economical results are overseen by the management of a company and used as a source for action. An overview of best industrial practices is given, later compared to the approach employed by the upstream division of Gazprom Neft company. The latter presents general process and key principles, including process initiation triggers, stages and KPIs used for the monitoring. The importance of technology diffusion is discussed, specifically the impact of technology readiness level on the success of a project is considered as well as necessity to develop “fail fast” culture in the company in order to have higher success ratio. Interconnection between the diffusion of a technology and the amount of intellectual property created by the technology is studied. The need for alignment to the company’s strategies by the project teams is revealed as well as continuous education methods are presented. The conclusion contains results and ways for improvement of the postimplementation review process in the company.


2018 ◽  
Vol 178 ◽  
pp. 08006
Author(s):  
Alexei Toca ◽  
Vadim Iaţchevici ◽  
Tatiana Niţulenco ◽  
Nicolae Rusu

Technological transfer is a complex and varied process, being realized out at different stages of technology readiness level. Being essentially a trading, technology transfer is fully subject to market laws. The technology transfer strategy and tactics are strongly influenced by the degree of technology's readiness level, systemic character, functional orientation and universality, technical and economic determination degrees that can be specified and determined in accordance with the stages of technology life cycle.


Author(s):  
Benjamin Kirollos ◽  
Roderick Lubbock ◽  
Paul Beard ◽  
Frédéric Goenaga ◽  
Anton Rawlinson ◽  
...  

This paper describes a new engine-parts facility at the University of Oxford for high technology-readiness-level research, new technology demonstration, and for engine component validation. The Engine Component AeroThermal (ECAT) facility has a modular working section which houses a full annulus of engine components. The facility is currently operated with high-pressure nozzle guide vanes from a large civil jet-engine. A high degree of engine similarity is achieved, with matched conditions of Mach number, Reynolds number, and coolant-to-mainstream pressure ratio. For combustor-turbine interaction studies, a combustor simulator module is used, which is capable of both rich-burn and lean-burn combined temperature, swirl and turbulence profiles. The facility is being used for aerothermal optimisation research (e.g., novel cooling systems, aerodynamic optimisation problems, capacity sensitivity studies), computational fluid dynamics validation (aerodynamic predictions, conjugate predictions), and for component validation to accelerate the engine design process. The three key measurement capabilities are: capacity characteristic evaluation to a precision of 0.02%; overall cooling (metal) effectiveness measurements (using a rainbow set of parts if required); and aerodynamic loss evaluation (with realistic cooling, trailing-edge flow etc.). Each of these three capabilities have been separately developed and optimised in other facilities at the University of Oxford in the last 10 years, to refine aspects of facility design, instrumentation design, experimental technique, and theoretical aspects of scaling and reduction of experimental data. The ECAT facility brings together these three research strands with a modular test vehicle for rapid high technology-readiness-level research, demonstration of new technologies, and for engine component validation. The purpose of this paper is to collect in one place — and put in context — the work that led to the development of the ECAT facility, to describe the facility, and to illustrate the accuracy and utility of the techniques by presenting typical data for each of the key measurements. The ECAT facility is a response to the changing requirements of experimental turbomachinery testing, and it is hoped this paper will be of interest to engine designers, researchers, and those involved in major facility developments in both research institutes and engine companies.


Sign in / Sign up

Export Citation Format

Share Document