scholarly journals A multipurpose modular drone with adjustable arms produced via the FDM additive manufacturing process

2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Salvatore Brischetto ◽  
Alessandro Ciano ◽  
Carlo Giovanni Ferro

AbstractThe present paper shows an innovative multirotor Unmanned Aerial Vehicle (UAV) which is able to easily and quickly change its configuration. In order to satisfy this feature, the principal structure is made of an universal plate, combined with a circular ring, to create a rail guide able to host the arms, in a variable number from 3 to 8, and the legs. The arms are adjustable and contain all the avionic and motor drivers to connect the main structure with each electric motor. The unique arm design, defined as all-in-one, allows classical single rotor configurations, double rotor configurations and amphibious configurations including inflatable elements positioned at the bottom of the arms. The proposed multi-rotor system is inexpensive because of the few universal pieces needed to compose the platform which allows the creation of a kit. This modular kit allows to have a modular drone with different configurations. Such configurations are distinguished among them for the number of arms, number of legs, number of rotors and motors, and landing capability. Another innovation feature is the introduction of the 3D printing technology to produce all the structural elements. In this manner, all the pieces are designed to be produced via the Fused Deposition Modelling (FDM) technology using desktop 3D printers. Therefore, an universal, dynamic and economic multi-rotor UAV has been developed.

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 672 ◽  
Author(s):  
Elena Verdejo de Toro ◽  
Juana Coello Sobrino ◽  
Alberto Martínez Martínez ◽  
Valentín Miguel Eguía ◽  
Jorge Ayllón Pérez

New technologies are offering progressively more effective alternatives to traditional ones. Additive Manufacturing (AM) is gaining importance in fields related to design, manufacturing, engineering and medicine, especially in applications which require complex geometries. Fused Deposition Modelling (FDM) is framed within AM as a technology in which, due to their layer-by-layer deposition, thermoplastic polymers are used for manufacturing parts with a high degree of accuracy and minimum material waste during the process. The traditional technology corresponding to FDM is Polymer Injection Moulding, in which polymeric pellets are injected by pressure into a mould using the required geometry. The increasing use of PA6 in Additive Manufacturing makes it necessary to study the possibility of replacing certain parts manufactured by injection moulding with those created using FDM. In this work, PA6 was selected due to its higher mechanical properties in comparison with PA12. Moreover, its higher melting point has been a limitation for 3D printing technology, and a further study of composites made of PA6 using 3D printing processes is needed. Nevertheless, analysis of the mechanical response of standardised samples and the influence of the manufacturing process on the polyamide’s mechanical properties needs to be carried out. In this work, a comparative study between the two processes was conducted, and conclusions were drawn from an engineering perspective.


Author(s):  
Leonardo Portilha Gomes da Costa ◽  
Stephanie Isabel Díaz Zamalloa ◽  
Fernando Amorim Mendonça Alves ◽  
Renan Spigolon ◽  
Leandro Yukio Mano ◽  
...  

3D printers manufacture objects used in various dental specialties. Objective: This literature review aims to explore different techniques of current 3D printers and their applications in printed materials for dental purposes. Methods: The online PubMed databases were searched aiming to find applications of different 3D printers in the dental area. The keywords searched were 3D printer, 3D printing, additive manufacturing, rapid prototyping, 3D prototyping, dental materials and dentistry. Results: From the search results, we describe Stereolithography (SLA), Digital Light Processing (DLP), Material Jetting (MJ), Fused Deposition Modeling (FDM), Binder Jetting (BJ) and Dust-based printing techniques. Conclusion: 3D printing enables different additive manufacturing techniques to be used in dentistry, providing better workflows and more satisfying clinical results.


2021 ◽  
Vol 2 (8) ◽  
pp. 1480-1493
Author(s):  
Ilham Akbar ◽  
Zaldy Sirwansyah Suzen ◽  
Idiar Idiar

Pada era industri perkembangan teknologi pada saat ini telah mengalami kemajuan yang sangat pesat, salah satunya adalah teknologi 3D printing atau juga dikenal sebagai additive manufacturing. Salah satu teknologi 3D printing yang terkenal adalah Fused Deposition Modelling (FDM). Prinsip kerja FDM adalah dengan cara ekstrusi termoplastik melalui nozzle yang panas pada melting temperature selanjutnya produk dibuat lapis perlapis. Teknologi 3D printing adalah proses pembuatan benda padat dari sebuah file digital. Penelitian ini menggunakan metode eksperimen, dilakukan pada mesin 3D printing FDM model Prusa area dengan menggunakan nozzle 0,4mm. Material yang digunakan adalah filamen PLA+ dengan diameter 1,75mm variasi parameternya nozzle temperature (205oC, 215oC, 225oC), Cooling speed (100%, 90%, 80%), infill type (grid, lines, triangles, Tri hexagon, cubic, cubic subdivision, octet, quarter qubic, concentric, zigzag, cross, cross 3D dan gyroid). Penelitian ini menggunakan 39 sampel dengan tujuan untuk mengetahui hasil uji impak tertinggi dan terendah dengan pengujian impak dari parameter yang ditentukan yaitu orientasi printing 90o. Hasil dari pengujian impak tertinggi sebesar 0,00548 Joule/mm2 dengan ekperimen nomor 32 infill geometry (cubic Subdivision), cooling speed 80% dan nozzle temperature 225ºC. Sedangkan nilai uji impak terendah sebesar 0,00084 Joule/mm2 dengan ekperimen nomor 14 dan 17 infill geometry (grid) dan (Tri hexagon), cooling speed 90%, nozzle temperature 215ºC dan ekperimen nomor 27 infill geometry grid, cooling speed 80%, nozzle temperature 225ºC. hasil pengujian impak menggunakan spesimen PLA+ didapatkan nilai uji impak sebesar 0,00548 Joule/mm2, dengan ekperimen nomor 32 infill geometry cubic subdivision, cooling speed 80%, nozzle temperature 225oC.


Author(s):  
Alexander Rompas ◽  
Charalampos Tsirmpas ◽  
Ianos Papatheodorou ◽  
Georgia Koutsouri ◽  
Dimitris Koutsouris

3D printing is about being able to print any object layer by layer. But if one questions this proposition, can one find any three-dimensional objects that can't be printed layer by layer? To banish any disbeliefs the authors walked together through the mathematics that prove 3d printing is feasible for any real life object. 3d printers create three-dimensional objects by building them up layer by layer. The current generation of 3d printers typically requires input from a CAD program in the form of an STL file, which defines a shape by a list of triangle vertices. The vast majority of 3d printers use two techniques, FDM (Fused Deposition Modelling) and PBP (Powder Binder Printing). One advanced form of 3d printing that has been an area of increasing scientific interest the recent years is bioprinting. Cell printers utilizing techniques similar to FDM were developed for bioprinting. These printers give us the ability to place cells in positions that mimic their respective positions in organs. Finally, through a series of case studies the authors show that 3d printers have made a massive breakthrough in medicine lately.


Author(s):  
V. Kovan ◽  
G. Altan ◽  
E.S. Topal ◽  
H.E. Camurlu

Three-dimensional printing or 3D printing (also called additive manufacturing) is any of various processes used to make a three-dimensional object. Fused deposition modelling (FDM) is an additive manufacturing technology commonly used for modelling, prototyping, and production applications. It is one of the techniques used for 3D printing. FDM is somewhat restricted in the size and the variation of shapes that may be fabricated. For parts too large to fit on a single build, for faster job builds with less support material, or for parts with finer features, sectioning and bonding FDM parts is a great solution. The strength of adhesive bonded FDM parts is affected by the surface roughness. In this study, the layer thickness effect on bonding strength is experimentally studied and the results are discussed.


Author(s):  
Andrean George Wibisono

3D Printing merupakan evolusi dari teknologi cetak, yaitu mampu menghasilkan atau memproduksi dan merancang struktur yang canggih dalam satu kesatuan.3D Printing adalah salah satu proses fabrikasi Fused Deposition  Modelling (FDM) yaitu teknologi Additive Manufacturing (AM) yang sistem kerjanya pembentukan benda dengan penambahan bahan lapis demi lapis. Dalam dunia industri, 3D Printing sangat digemari karena untuk pembuatan prototipe yang biasanya membutuhkan waktu yang lama dapat dibuat dalam waktu yang lebih singkat. Hal tersebut sangat berpengaruh terhadap biaya yang keluarkan dalam menghasilkan produk yang berkualitas. Berdasarkan latar belakang tersebut maka tugas akhir ini merakit sebuah alat 3D Printer tipe Prusa i3. Alat ini akan digunakan untuk mencetakan produk 3 dimensi yang berasal dari desain CAD sehingga dapat membantu dosen atau mahasiswa dalam pengerjaan project seperti penelitian, komponen robot, modul maupun benda-benda lainnya. Hal yang harus diperhatikan dalam pencetakan produk adalah bahan baku cetak yang akan digunakan. Dalam penulisan tugas akhir ini akan dibahas mengenai alat dan bahan yang dibutuhkan untuk merakit 3D Printer, mendesain produk, penentuan bahan baku cetak, metodologi pengoperasian alat hingga hasil akhir yang akan dibuat oleh 3D Printer. Kata kunci : 3D Printer, 3 dimensi


2021 ◽  
Vol 9 ◽  
Author(s):  
Ana Luisa Silva ◽  
Gabriel Maia da Silva Salvador ◽  
Sílvia V. F. Castro ◽  
Nakédia M. F. Carvalho ◽  
Rodrigo A. A. Munoz

3D printing is a type of additive manufacturing (AM), a technology that is on the rise and works by building parts in three dimensions by the deposit of raw material layer upon layer. In this review, we explore the use of 3D printers to prototype electrochemical cells and devices for various applications within chemistry. Recent publications reporting the use of Fused Deposition Modelling (fused deposition modeling®) technique will be mostly covered, besides papers about the application of other different types of 3D printing, highlighting the advances in the technology for promising applications in the near future. Different from the previous reviews in the area that focused on 3D printing for electrochemical applications, this review also aims to disseminate the benefits of using 3D printers for research at different levels as well as to guide researchers who want to start using this technology in their research laboratories. Moreover, we show the different designs already explored by different research groups illustrating the myriad of possibilities enabled by 3D printing.


Author(s):  
M.I.M. Sargini ◽  
S.H. Masood ◽  
Suresh Palanisamy ◽  
Elammaran Jayamani ◽  
Ajay Kapoor

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wiktoria Maria Wojnarowska ◽  
Jakub Najowicz ◽  
Tomasz Piecuch ◽  
Michał Sochacki ◽  
Dawid Pijanka ◽  
...  

Purpose Chicken orthoses that cover the ankle joint area are not commercially available. Therefore, the main purpose of this study is to fabricate a customised temporary Ankle–Foot Orthosis (AFO) for a chicken with a twisted ankle using computer-aided design (CAD) and three-dimensional (3D) printing. The secondary objective of the paper is to present the specific application of Additive Manufacturing (AM) in veterinary medicine. Design/methodology/approach The design process was based on multiple sketches, photos and measurements that were provided by the owner of the animal. The 3D model of the orthosis was made with Autodesk Fusion 360, while the prototype was fabricated using fused deposition modelling (FDM). Evaluation of the AFO was performed using the finite element method. Findings The work resulted in a functional 3D printed AFO for chicken. It was found that the orthosis made with AM provides satisfactory stiffen and a good fit. It was concluded that AM is suitable for custom bird AFO fabrication and, in some respects, is superior to traditional manufacturing methods. It was also concluded that the presented procedure can be applied in other veterinary cases and to other animal species and other parts of their body. AM provides veterinary with a powerful tool for the production of well-fitted and durable orthoses for animals. Research limitations/implications The study does not include the chicken's opinion on the comfort or fit of the manufactured AFO due to communication issues. Evaluation of the final prototype was done by the researchers and the animal owner. Originality/value No evidence was found in the literature on the use of AM for chicken orthosis, so this study is the first to describe such an application of AM. In addition, the study demonstrates the value of AM in veterinary medicine, especially in the production of devices such as orthoses.


Author(s):  
Alfonso Costas ◽  
Daniel E. Davis ◽  
Yixian Niu ◽  
Sadegh Dabiri ◽  
Jose Garcia ◽  
...  

Additive manufacturing has emerged as an alternative to traditional manufacturing technologies. In particular, industries like fluid power, aviation and robotics have the potential to benefit greatly from this technology, due to the design flexibility, weight reduction and compact size that can be achieved. In this work, the design process and advantages of using 3D printing to make soft linear actuators were studied and highlighted. This work explored the limitations of current additive manufacturing tolerances to fabricate a typical piston-cylinder assembly, and how enclosed bellow actuators could be used to overcome high leakage and friction issues experienced with a piston-cylinder type actuator. To do that, different 3D printing technologies were studied and evaluated (stereolithorgraphy and fused deposition modeling) in the pursuit of high-fidelity, cost-effective 3D printing. The initial attempt consisted of printing the soft actuators directly using flexible materials in a stereolithography-type 3D printer. However, these actuators showed low durability and poor performance. The lack of a reliable resin resulted in the replacement of this material by EcoFlex® 00-30 silicone and the use of a 3D printed mold to cast the actuators. These molds included a 3-D printed dissolvable core inside the cast actuator in order to finish the manufacturing process in one single step. An experimental setup to evaluate the capabilities of these actuators was developed. Results are shown to assess the steady-state and the dynamic characteristics of these actuators. These tests resulted into the stroke-pressure and stroke-time responses for a specific load given different proportional valve inputs.


Sign in / Sign up

Export Citation Format

Share Document