High-temperature corrosion resistance of SiO2-forming materials

2018 ◽  
Vol 36 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Kazuya Kurokawa ◽  
Toto Sudiro ◽  
Tomonori Sano ◽  
Shoji Kyo ◽  
Osamu Ishibashi ◽  
...  

AbstractAn increasing demand for electricity and preserving the environment has become a great driving force for the development of advanced boilers for coal-fired plants to improve their plant efficiency by raising the operating temperature. To achieve this purpose, the development of materials that possess a high mechanical strength and excellent resistance against corrosion at high temperatures is required. Considering such situation, the high-temperature corrosion behavior of SiO2-forming materials such as CrSi2-Ni and CoNiCrAlY-Si alloys in atmospheres containing NaCl and Na2SO4 is introduced. The SiO2 scale plays a significant role in suppressing the inward diffusion of sulfur and chlorine, resulting in the remarkable suppression of the formation of sulfide and chloride at the scale/substrate interface and inside of the substrate. Based on such results, it is emphasized that SiO2-forming materials show outstanding corrosion resistance against atmospheres containing NaCl and Na2SO4.

Alloy Digest ◽  
2009 ◽  
Vol 58 (8) ◽  

Abstract DMV 59 is the material of choice for a wide variety of applications where significant corrosion resistance and high mechanical strength is necessary. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: Ni-672. Producer or source: Mannesmann DMV Stainless USA Inc.


Author(s):  
CongCong Liu ◽  
Zongde Liu ◽  
Yuan Gao ◽  
Xinyu Wang ◽  
Chao Zheng

Abstract To explore corrosion characteristics of TP91, C22 alloy and C22 laser coatings in reducing environment caused by low-nitrogen combustion at 500°C-600°C, a synthetic corrosive medium containing 0.2 vol. % H2S-0.1 vol. % O2-N2 were selected. Results showed that the order of corrosion resistance is: C22 laser coatings>C22 alloy>TP91. 550°C was the limit corrosion temperature for C22 alloy and C22 laser coatings. The reason for the strong corrosion resistance of C22 alloy and C22 laser coatings is that a dense layer of Cr-rich corrosion products due to the is produced in the inner layer, thus protecting the matrix from direct corrosion by corrosive gas. Finer grains before corrosion tests and the formation of dense Cr2O3 inner layers in much speedier process were the main reasons for the best corrosion resistance of C22 laser coatings.


Alloy Digest ◽  
1997 ◽  
Vol 46 (3) ◽  

Abstract Sandvik 10RE51 is a ferritic/austenitic duplex chromium-nickel stainless steel with both good resistance to pitting in aqueous solutions and good machinability. The alloy is often used over 300 series stainless steels when high mechanical strength is required. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-676. Producer or source: Sandvik.


Alloy Digest ◽  
1972 ◽  
Vol 21 (10) ◽  

Abstract INCONEL ALLOY 671 is a nickel-chromium alloy having excellent resistance to high-temperature corrosion. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-180. Producer or source: Huntington Alloy Products Division, An INCO Company.


Alloy Digest ◽  
1965 ◽  
Vol 14 (5) ◽  

Abstract BOFORS 2RM2 is a hardenable stainless cast steel having good weldability, high mechanical strength and improved corrosion resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low temperature performance and corrosion resistance as well as casting, forming, heat treating, machining, and joining. Filing Code: SS-169. Producer or source: Aktiebolaget Bofors.


Alloy Digest ◽  
1982 ◽  
Vol 31 (6) ◽  

Abstract Type HN is an iron-chromium-nickel alloy containing sufficient chromium for good high-temperature corrosion resistance and with nickel content in excess of the chromium. This alloy has properties somewhat similar to the more widely used ACI Type HT alloy but with better ductility. Type HN is used for highly stressed components in the 1800-2000 F temperature range. It is used in the aircraft, automotive, petroleum, petrochemical and power industries for a wide range of components and parts. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: SS-410. Producer or source: Various stainless steel casting companies.


Alloy Digest ◽  
1998 ◽  
Vol 47 (2) ◽  

Abstract Incoloy Alloy 864 is a high performance alloy developed specifically for automotive exhaust system flexible couplings and other exhaust applications. The alloy has a good combination of oxidation and corrosion resistance, with good mechanical strength, stability, and fatigue properties. This datasheet provides information on composition, physical properties, and elasticity. It also includes information on high temperature performance and corrosion resistance as well as joining. Filing Code: SS-708. Producer or source: Inco Alloys International Inc.


Author(s):  
T. Sand ◽  
A. Edgren ◽  
C. Geers ◽  
V. Asokan ◽  
J. Eklund ◽  
...  

AbstractA new approach to reduce the chromium and aluminium concentrations in FeCrAl alloys without significantly impairing corrosion resistance is to alloy with 1–2 wt.% silicon. This paper investigates the “silicon effect” on oxidation by comparing the oxidation behavior and scale microstructure of two FeCrAl alloys, one alloyed with silicon and the other not, in dry and wet air at 600 °C and 800 °C. Both alloys formed thin protective oxide scales and the Cr-evaporation rates were small. In wet air at 800 °C the Si-alloyed FeCrAl formed an oxide scale containing mullite and tridymite together with α- and γ-alumina. It is suggested that the reported improvement of the corrosion resistance of Al- and Cr-lean FeCrAl’s by silicon alloying is caused by the appearance of Si-rich phases in the scale.


2011 ◽  
Vol 696 ◽  
pp. 272-277 ◽  
Author(s):  
Toto Sudiro ◽  
Tomonori Sano ◽  
Akira Yamauchi ◽  
Shoji Kyo ◽  
Osamu Ishibashi ◽  
...  

The objective of this study is to develop an excellent corrosion resistant alloy for high temperature coating applications. The Si-containing alloys consisting of CoNiCrAlY and CrSi2 alloys with varying Si and Ni content respectively were prepared by spark plasma sintering (SPS) technique. The corrosion behavior of these alloys was investigated in the gas phase of air-(Na2SO4+25.7mass%NaCl) at elevated temperatures of 923, 1073 and 1273K. The results showed that CoNiCrAlY alloy with 30mass% Si content and CrSi2 alloy with 10mass% Ni content were the most effective materials for application in the gas phase of air-(Na2SO4+25.7mass%NaCl) due to the formation of protective Al2O3/SiO2 and SiO2 scale, respectively. Therefore, it is realized that CoNiCrAlY-30mass% Si and CrSi2-10mass% Si coating are very effective for improving of high temperature corrosion resistance of STBA21 steel.


Sign in / Sign up

Export Citation Format

Share Document