Process Integration and Feedstock Optimisation of a Two-Step Biodiesel Production Process from Jatropha Curcas Using Aspen Plus

2018 ◽  
Vol 14 (2) ◽  
Author(s):  
Adewale George Adeniyi ◽  
Joshua O Ighalo ◽  
Omodele A. A Eletta

Abstract Jatropha curcas oil (JCO) has been recognized as a viable non-edible feedstock for biodiesel production with the focus of achieving lesser reliance on fossil fuels. The aim of this work is to integrate and simulate the production of biodiesel from Jatropha curcas oil by a two-step process; a hydrolysis step and a trans-esterification step. The challenge is then to optimise the feedstock ratios to obtain the minimal water and methanol consumption to give optimal biodiesel yield. For this purpose, steady-state simulation model of a two-step production process of biodiesel from Jatropha curcas oil was prepared using ASPEN Plus V8.8. The response surface methodology (RSM) based on a central composite design (CCD) was used to design optimisation experiments for the research work. From the ANOVA, methanol/oil ratio of the trans-esterification step was found to have a significant effect on the biodiesel yield compared to the water/oil ratio of the hydrolysis step. The linear model developed was shown to be a good predictor of feedstock ratios for biodiesel yield. The surface plot revealed that both feedstock ratios do not show a significant combinatorial effect on each other. Numerical optimisation gave the optimum values of the feedstock ratios as a methanol/oil ratio of 2.667 and a water/oil ratio of 1. The optimisation results also indicated a predicted optimum biodiesel yield of 10.0938 kg/hr.

2019 ◽  
Vol 8 (4) ◽  
pp. 6281-6287 ◽  

The world continues to search for renewable energy resources, due to the devastating effect of global warming and the dwindling resources of fossil fuels. Without needing much modifications to the existing diesel engines, biodiesel is regarded as one of the most promising ways to treat these two issues simultaneously. However, the production of biodiesel is always associated with a higher cost compared to its counterpart; the petroleum-derived diesel. In addition, the type of feedstock used in the production of biodiesel also has also become a big concern due to the never-ending fuel vs food debate. Jatropha curcas is a second generation feedstock which can be specifically grown to avoid the usage of edible oils as feedstock to produce fuel. In this paper, the energy saving potential of using elite Jatropha curcas hybrid for biodiesel production in Malaysia are evaluated by conducting a full chain energy analysis. It was found that the new hybrid consumed 25.32 MJ of energy in order to produce 1kg of biodiesel. The net energy balance (NEB) and net energy ratio (NER) when by-products are not utilized are found to be 15.89 MJ/kg and 1.63, respectively. However, the NEB and NER increase to 26.72 MJ/kg and 2.84 when the by-products are used in the biodiesel conversion process. Hence, this new hybrid of Jatropha curcas has a huge potential to be used for the production of biodiesel.


2013 ◽  
Vol 101 ◽  
pp. 218-225 ◽  
Author(s):  
A.M. Blanco-Marigorta ◽  
J. Suárez-Medina ◽  
A. Vera-Castellano

Inventions ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 60
Author(s):  
Dhurba Neupane ◽  
Dwarika Bhattarai ◽  
Zeeshan Ahmed ◽  
Bhupendra Das ◽  
Sharad Pandey ◽  
...  

Dwindling supplies of fossil fuels and their deleterious impacts on human health and the global environment have intensified the search for substitute energy sources. Biodiesel has been identified as a promising renewable energy substitute for diesel fuel due to several comparable and sustainable properties. However, approximately 95% of biodiesel is derived from edible oil crops, threatening the current food supplies. Therefore, the biodiesel production potential from inexpensive, non-edible, and non-conventional bioenergy crops, such as Jatropha (Jatropha curcas L.), has attracted the attention of many researchers, policymakers, and industries globally. Jatropha is considered to be the second-generation biofuel feedstocks for biodiesel production. However, sustainable biodiesel generation from J. curcas oil has not yet been attained, owing to different socio-economic, ecological, and technical factors. This study aimed to synthesize the information from the existing literature on the present status and to identify the knowledge gaps for future research on Jatropha by providing comprehensive information regarding its origin and distribution, morphology, phenology, and reproduction, genetic diversity, its productivity, oil content, and fatty acid composition, the methodology used for extracting biodiesel, and agronomic, economic, and environmental aspects of biodiesel production. The germplasm screening of J. curcas and the exploration of its adaptability and agronomic potential across diverse climates are highly desired to promote this crop as an alternative biofuel crop, particularly in arid and semi-arid regions. Moreover, future research should focus on developing, optimizing, and modernizing the technologies involving seed collection, the processing of seeds, oil extraction, and the production of biodiesel.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8394
Author(s):  
Mariusz Niekurzak

Thanks to the allocation methods, i.e., the division of the total GHG emissions between each of the products generated in the production of biofuels, it is possible to reduce the emissions of these gases by up to 35% in relation to the production and combustion of fuels derived from crude oil. As part of this study, the biodiesel production process was analyzed in terms of greenhouse gas (GHG) emissions. On the basis of the obtained results, the key factors influencing the emissions level of the biodiesel production process were identified. In order to assess the sensitivity of the results of the adopted allocation method, this study included calculations of GHG emissions with an allocation method based on mass, energy, and financial shares. The article reviews recent advances that have the potential to enable a sustainable energy transition, a green economy, and carbon neutrality in the biofuels sector. The paper shows that the technology used for the production of biodiesel is of great importance for sustainable development. The possibility of using renewable raw materials for the production of fuels leads to a reduction in the consumption of fossil fuels and lower emission of pollutants. It showed that during the combustion of biodiesel, the percentages of released gas components, with the exception of nitrogen oxides, which increased by 13%, were significantly lower: CO2—78%, CO—43%, SO2—100%, PM10—32%, and volatile hydrocarbons—63%. Moreover, it was found that biodiesel undergoes five times faster biodegradation in the environment than diesel oil.


2011 ◽  
Vol 35 (5) ◽  
pp. 801-807 ◽  
Author(s):  
Evan Michael Visser ◽  
Delly Oliveira Filho ◽  
Marcos Rogério Tótola ◽  
Marcio Arêdes Martins ◽  
Valéria Monteze Guimarães

e-xacta ◽  
2018 ◽  
Vol 11 (2) ◽  
pp. 31
Author(s):  
José Izaquiel Santos da Silva ◽  
Edilailsa Januário de Melo ◽  
Eduardo De Paulo Ferreira ◽  
Mariana Freitas Moura ◽  
Shirley Caroline Nascimento

<p><em>O biodiesel vem sendo amplamente utilizado no mercado atual como uma alternativa de substituição aos combustíveis fósseis finitos. No final de sua produção, 10% da corrente de saída do processo é composta de glicerol. A conversão deste glicerol em hidrogênio é uma alternativa que visa agregar valor econômico a este subproduto. Sendo assim, este trabalho apresenta um estudo da reforma em fase aquosa de glicerol, subproduto de um processo de produção de biodiesel, utilizando catalisador de platina suportados em Al<sub>2</sub>O<sub>3</sub> para produção de hidrogênio. Para isto, os balanços de massa e energia foram analisados, onde os resultados mostraram uma corrente final constituída de hidrogênio e 4,66% de CO<sub>2</sub>,</em> <em>impactando em baixos gastos energéticos e gerando resíduos menos poluentes se comparados as rotas de reforma mais tradicionais empregadas na indústria</em><em>.</em></p><p><em> </em></p><p><em>Abstract</em></p><p><em> Biodiesel is being widely used in the current market in place of fossil fuels. At the end of its production process, 10% of the output stream is comprised of glycerol. The conversion of this glycerol into hydrogen is an alternative that can add economic value to the by-product. This paper presents a study of the aqueous-phase reforming of glycerol, by product of a biodiesel production process, over platinum catalysts supported on Al<sub>2</sub>O<sub>3</sub> for hydrogen production. For this, the mass and energy balances were analyzed, where the results showed a final current constituted of hydrogen and only 4.66% of CO<sub>2</sub>, impacting on low energy costs and the generation of less polluting residues when compared to the used in industry.</em></p>


2015 ◽  
Vol 193 ◽  
pp. 192-199 ◽  
Author(s):  
Chunfeng Song ◽  
Guanyi Chen ◽  
Na Ji ◽  
Qingling Liu ◽  
Yasuki Kansha ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
José A. León ◽  
Gisela Montero ◽  
Marcos Coronado ◽  
José R. Ayala ◽  
Conrado García ◽  
...  

Recent research and development of clean energy have become essential due to the global climate change problem, which is caused largely by fossil fuels burning. Therefore, biodiesel, a renewable and ecofriendly biofuel with less environmental impact than diesel, continues expanding worldwide. The process for biodiesel production involves a significant energy demand, specifically in the methanol recovery stage through a flash separator and a distillation column. Traditionally, the energy required for this process is supplied by fossil fuels. It represents an opportunity for the application of renewable energy. Hence, the current study presents a system of thermal energy storage modeled in TRNSYS® and supported by simulations performed in ASPEN PLUS®. The aim of this research was to supply solar energy for a methanol recovery stage in a biodiesel production process. The results highlighted that it is feasible to meet 91% of the energy demand with an array of 9 parabolic trough collectors. The array obtained from the simulation was 3 in series and 3 in parallel, with a total area of 118.8 m2. It represents an energy saving of 70 MWh per year.


Sign in / Sign up

Export Citation Format

Share Document