Control of negative gain nonlinear processes using sliding mode controllers with modified Nelder-Mead tuning equations

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Govinda Kumar E. ◽  
Arunshankar J.

Abstract This paper proposes a sliding mode controller (SMC) with modified Nelder-Mead tuning, for the control of nonlinear chemical processes, which are represented as first order plus dead time process with negative gain (FOPDT-NG). In the controller design, the SMC controller parameter in continuous part is obtained based on the time constant and dead time of the process, and controller parameters in the discontinuous part is obtained using Nelder-Mead tuning equations. Even though the controller parameters of conventional SMC are tuned using Nelder-Mead tuning, zero dynamics are noticed in the closed loop response of few FOPDT-NG processes and, with few other FOPDT-NG processes tracking of set-point is unachievable. This work proposes modification in the Nelder-Mead tuning equations using Nelder-Mead optimization to overcome the above disadvantages. Four different types of FOPDT-NG processes are considered in this work, and for every type the Nelder-Mead tuning equations are modified, for the design of proposed controllers. The performances of proposed controllers are evaluated for FOPDT-NG processes and also for three different chemical processes taken from literature. A simulation results demonstrate that, the proposed controller prevailed the performance of the conventional SMC in tracking the set-point and the elimination of zero dynamic behavior of FOPDT-NG processes. Hence, the proposed controllers provide improved closed loop performances as compared to the conventional SMC.

Author(s):  
Moshu Qian ◽  
Zhen Zhang ◽  
Guanghua Zhong ◽  
Cuimei Bo

In this paper, a closed-loop brain stimulation control problem is investigated using the nonsingular integral terminal sliding mode (NITSM) control approach. First, the thalamocortical model of epilepsy seizure is given, which is composed of the cortical PY-IN subnetwork and the subcortical RE-TC subsystem. Then, a nonsingular integral terminal sliding mode surface is designed utilizing the derived output tracking error, and the stability of the sliding mode dynamics is proved by Lyapunov approach. Furthermore, a disturbance observer (DOB) based NITSM controller design approach is proposed for the established thalamocortical model, and the reachability of the closed-loop control system under the designed controller is analyzed using Lyapunov theory. Finally, simulation results are given to illustrate the effectiveness and superiority of the designed control scheme.


2010 ◽  
Vol 29-32 ◽  
pp. 1175-1180
Author(s):  
Qing Kun Zhou ◽  
Sheng Jian Bai ◽  
Zhi Yong Zhang

The design of variable structure system inputs which are constrained by saturation is studied. For a LTI system which satisfies some conditions, it is shown that appropriate bounded controllers guarantee the system’s global stability and maximize the sliding mode domain on the switching surfaces. Stability conditions of variable structure systems with constrained inputs are relaxed, and the stability of the closed-loop system is guaranteed by using passivity theory of linear passive systems. Moreover, nonlinear sliding surfaces are discussed for variable structure controller design, and a novel nonlinear switching surface is proposed. Finally, the proposed methods are applied to a 2nd order LTI system to show their usefulness.


2020 ◽  
Vol 42 (14) ◽  
pp. 2698-2707
Author(s):  
Masoud Bahraini ◽  
Mohammad Javad Yazdanpanah ◽  
Shokufeh Vakili ◽  
Mohammad Reza Jahed-Motlagh

Controller design for nonlinear systems in its general form is complicated and an open problem. Finding a solution to this problem becomes more complicated when unwanted terms, such as disturbance, are taken into account. To provide a robust design for a subclass of nonlinear systems, sliding mode controllers (SMCs) are used. These controllers have a systematic design procedure and can reject bounded disturbances and at the same time guarantee stability. The guaranteed stability is achieved by separating system states into two parts and assuming that the input to state stability (ISS) condition holds for internal dynamics. This condition restricts the applicability of the SMC and limits the system performance when the controller is designed based on that. In order to remove this restriction and improve the performance, the ISS condition has been relaxed in this study. The relaxation is performed by redesigning SMCs based on suggested Lyapunov functions. The proposed idea insures global asymptotic stability of the closed loop system and is used to revise different well-known SMCs such as conventional SMC, terminal SMC, non-singular terminal SMC, integral SMC, super-twisting SMC, and super-twisting integral SMC. Comparisons between conventional and revised versions are made using simulation to demonstrate excellence of the revisited controllers.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Govinda Kumar E ◽  
Arunshankar J

Abstract Control of multi input and multi output (MIMO) process with interaction is often encountered in process industry. Such MIMO processes are controlled using conventional sliding mode controller (SMC) and tuned by integral square error (ISE) minimizing criterion based Nelder-Mead algorithm. SMC tuned by integral time absolute error (ITAE) minimization criterion based Nelder-Mead algorithm is proposed in this work. Three categories of two inputs and two outputs (TITO) process models are represented in the matrix form, with each of the matrix element representing a first order plus dead time (FOPDT) process. These TITO models are categorized based on the ratio ε, between dead time and time constant of the FOPDT model which forms the matrix element of the TITO model. The performance of conventional SMC is evaluated for these three categories of TITO models, in which the TITO process models with the ratio ε greater than the one, exhibited by poor closed loop performance, whereas the proposed SMC when applied to the these process models delivered superior closed loop performance.


Author(s):  
Teh-Lu Liao ◽  
Jun-Juh Yan ◽  
Wei-Shou Chan

This paper presents a distributed formation control for multirobot dynamic systems with external disturbances and system uncertainties. First from the Lagrangian analysis, the dynamic model of a wheeled mobile robot can be derived. Then, the robust distributed formation controller is proposed based on sliding-mode control, consensus algorithm, and graph theory. In this study, the robust stability of the closed-loop system is guaranteed by the Lyapunov stability theorem. From the simulation results, the proposed approach provides better formation responses compared to consensus algorithm.


Author(s):  
Maryam Farahmandrad ◽  
Soheil Ganjefar ◽  
Heidar Ali Talebi ◽  
Mahdi Bayati

This paper proposes a control framework for a cooperative robotic system to grasp and handle an object with known geometry in the presence of uncertainty in robot dynamics. Based on passive decomposition approach, dynamic equations of the cooperative robotic system are decomposed into two decoupled systems, shape and locked systems. The locked system and the shape system are controlled by two fuzzy sliding mode controllers (SMCs). Stability is studied through passivity property and Lyapunov theorem. Simulation results confirm that the proposed control scheme works well.


Author(s):  
Yasir Al-Nadawi ◽  
Xiaobo Tan ◽  
Hassan Khalil

Abstract Nanopositioning stages are widely used in high-precision positioning applications. However, they suffer from an intrinsic hysteretic behavior, which deteriorates their tracking performance. This study proposes an adaptive conditional servocompensator (ACS) to compensate the effect of the hysteresis when tracking periodic references. The nanopositioning system is modeled as a linear system cascaded with hysteresis at the input side. The hysteresis is modeled with a Modified Prandtl-Ishlinskii (MPI) operator. With an approximate inverse MPI operator placed before the system hysteresis operator, the resulting system takes a semi-affine form. The design of the adaptive conditional servocompensator consists of two stages: firstly, we design a continuously-implemented sliding mode control (SMC) law. The hysteresis inversion error is treated as a matched disturbance and an analytical bound on the inversion error is used to minimize the conservativeness of the SMC design. The second part of the controller is the adaptive conditional servocompensator. Under mild assumptions, we establish the well-posedness and periodic stability of the closed-loop system. In particular, the solution of the closed-loop error system will converge exponentially to a unique periodic solution in the neighborhood of zero. The efficacy of the proposed controller is verified experimentally on a commercial nanopositioning device under different types of periodic reference inputs, via comparison with multiple inversion-based and inversion-free approaches.


2016 ◽  
Vol 136 (5) ◽  
pp. 625-632
Author(s):  
Yoshihiro Matsui ◽  
Hideki Ayano ◽  
Shiro Masuda ◽  
Kazushi Nakano

Sign in / Sign up

Export Citation Format

Share Document