A New Application of Hollow Nanosilica Added to Modified Polypropylene to Prepare Nanocomposite Films

NANO ◽  
2021 ◽  
pp. 2150117
Author(s):  
Xu Li ◽  
Ying-Jun Zhang ◽  
Chi-Hui Tsou ◽  
Yi-Hua Wen ◽  
Chin-San Wu ◽  
...  

Since the inception of research on hollow silica, the use of hollow nanosilica (HNS) as additives in barrier materials has not been reported. In this study, we evaluated the capacity of HNS as an additive in modified polypropylene (MPP). According to X-ray diffraction (XRD), the crystallinity, tensile strength, and thermal stability of MPP/HNS nanocomposite containing 0.1[Formula: see text]phr HNS approached maximum values. Moreover, the nanocomposite had the best performance in terms of water vapor barrier and oxygen resistance. The reasons for the improvement in barrier performance were discussed. Scanning electron microscopy revealed that HNS at a low content dispersed well in MPP. In conclusion, the synthesized HNS can be used as an additive in barrier materials, and it would have potential applications in the fields of food packaging films and storage containers or materials.

Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3193
Author(s):  
Sylva Holešová ◽  
Karla Čech Čech Barabaszová ◽  
Marianna Hundáková ◽  
Michaela Ščuková ◽  
Kamila Hrabovská ◽  
...  

Infection with pathogenic microorganisms is of great concern in many areas, especially in healthcare, but also in food packaging and storage, or in water purification systems. Antimicrobial polymer nanocomposites have gained great popularity in these areas. Therefore, this study focused on new approaches to develop thin antimicrobial films based on biodegradable polycaprolactone (PCL) with clay mineral natural vermiculite as a carrier for antimicrobial compounds, where the active organic antimicrobial component is antifungal ciclopirox olamine (CPX). For possible synergistic effects, a sample in combination with the inorganic antimicrobial active ingredient zinc oxide was also prepared. The structures of all the prepared samples were studied by X-ray diffraction, FTIR analysis and, predominantly, by SEM. The very different structure properties of the prepared nanofillers had a fundamental influence on the final structural arrangement of thin PCL nanocomposite films as well as on their mechanical, thermal, and surface properties. As sample PCL/ZnOVER_CPX possessed the best results for antimicrobial activity against examined microbial strains, the synergic effect of CPX and ZnO combination on antimicrobial activity was proved, but on the other hand, its mechanical resistance was the lowest.


2012 ◽  
Vol 19 (3) ◽  
pp. 215-220
Author(s):  
Khalil Faghihi ◽  
Mohammad Naderi-Ghomi ◽  
Mohsen Hajibeygi

AbstractA series of polyamide (PA)/montmorillonite nanocomposites containing pyrazine moiety in the main chain were synthesized by a convenient solution intercalation technique. PA 3 as a source of polymer matrix was synthesized by the direct polycondensation reaction of pyrazine-2,3-dicarboxylic acid 1 with 4,4′-diaminodiphenyl sulfone 2 in the presence of triphenyl phosphite, CaCl2, pyridine, and N-methyl-2-pyrrolidone. The resulting nanocomposite films were characterized by Fourier transform infrared spectra, X-ray diffraction, scanning electron microscopy, and thermogravimetric analysis (TGA). The results showed that organo-modified clay was dispersed homogeneously in the PA matrix. TGA indicated an enhancement of thermal stability of new nanocomposites compared with the pure polymer.


2018 ◽  
Vol 36 (2) ◽  
pp. 283-287
Author(s):  
Aseel A. Kareem

Abstract Polyimide/polyaniline nanofiber composites were prepared by in situ polymerization with various weight percentages of polyaniline (PANI) nanofibers. X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR), proved the successful preparation of PANI nanofiber composite films. In addition, thermal stability of PI/PANI nanofiber composites was superior relative to PI, having 10 % gravimetric loss in the range of 623 °C to 671 °C and glass transition temperature of 289 °C to 297 °C. Furthermore, the values of the loss tangent tanδ and AC conductivity σAC of the nanocomposite films were notably higher than those of pure polyimide. The addition of 5 wt.% to 15 wt.% PANI nanofiber filler enhanced the activation energy of PI composites from 0.37 eV to 0.34 eV.


2021 ◽  
Vol 11 (20) ◽  
pp. 9364
Author(s):  
Aris E. Giannakas ◽  
Constantinos E. Salmas ◽  
Andreas Karydis-Messinis ◽  
Dimitrios Moschovas ◽  
Eleni Kollia ◽  
...  

Over the years, there has been an effort to extend food shelf life so as to reduce global food waste. The use of natural biodegradable materials in production procedures is more and more adopted nowadays in order to achieve cyclic economy targets and improve environmental and human health indexes. Active packaging is the latest trend for food preservation. In this work, polystyrene was mixed with natural NaMt, OrgNaMt montmorillonite, and oregano essential oil to develop a new packaging film. Strength, oxygen and water-vapour permeation, blending and homogeneity, and antimicrobial and antioxidant activity were measured as basic parameters for food packaging films characterization. Instruments such as a tensile measurement instrument, XRD, FTIR, DMA, OPA (Oxygen Permeation Analyzer), and other handmade devices were used. Results showed that polystyrene could be modified, improved, and exhibits food odour prevention characteristics in order to be used for applications on food active packaging. The material with the code name PS5OO@OrgMt qualified between the tested samples as the most promising material for food active packaging applications.


2017 ◽  
Vol 16 (05n06) ◽  
pp. 1750012 ◽  
Author(s):  
Farhad Jahantigh ◽  
Mehdi Nazirzadeh

In this project, nanocomposite films were prepared with different Titanium dioxide (TiO2) percentages. Properties of polycarbonate (PC) and PC–TiO2nanocomposite films were studied by X-ray diffraction (XRD) analysis and Fourier transform infrared (FTIR) spectroscopy. The structure of samples was studied by XRD. The mechanical properties of PC–TiO2nanocomposite films were investigated by conducting tensile tests and hardness measurements. Thermal stability of the nanocomposites was studied by thermogravimetric analysis (TGA) method. The elastic modulus of the composite increased with increasing weight fraction of nanoparticles. The microhardness value increases with increasing TiO2nanoparticles. The results of tensile testing were in agreement with those of micro-hardness measurements. In addition, TGA curves showed that nanocomposite films have higher resistance to thermal degradation compared to polycarbonate. There are many reports related to the modification of polycarbonate films, but still a systematic study of them is required.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hairul Abral ◽  
Angga Bahri Pratama ◽  
Dian Handayani ◽  
Melbi Mahardika ◽  
Ibtisamatul Aminah ◽  
...  

As a contribution to the growing demand for environmentally friendly food packaging films, this work produced and characterized a biocomposite of disintegrated bacterial cellulose (BC) nanofibers and tapioca starch/chitosan-based films. Ultrasonication dispersed all fillers throughout the film homogeneously. The highest fraction of dried BC nanofibers (0.136 g) in the film resulted in the maximum tensile strength of 4.7 MPa. 0.136 g BC nanofiber addition to the tapioca starch/chitosan matrix increased the thermal resistance (the temperature of maximum decomposition rate from 307 to 317°C), moisture resistance (after 8 h) by 8.9%, and water vapor barrier (24 h) by 27%. All chitosan-based films displayed antibacterial activity. This characterization suggests that this environmentally friendly edible biocomposite film is a potential candidate for applications in food packaging.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1976 ◽  
Author(s):  
Sandra Rojas-Lema ◽  
Luis Quiles-Carrillo ◽  
Daniel Garcia-Garcia ◽  
Beatriz Melendez-Rodriguez ◽  
Rafael Balart ◽  
...  

In this work, films of polylactide (PLA) prepared by extrusion and thermo-compression were plasticized with oligomer of lactic acid (OLA) at contents of 5, 10, and 20 wt%. The PLA sample containing 20 wt% of OLA was also reinforced with 3, 6, and 9 parts per hundred resin (phr) of halloysite nanotubes (HNTs) to increase the mechanical strength and thermal stability of the films. Prior to melt mixing, ultrasound-assisted dispersion of the nanoclays in OLA was carried out at 100 °C to promote the HNTs dispersion in PLA and the resultant films were characterized with the aim to ascertain their potential in food packaging. It was observed that either the individual addition of OLA or combined with 3 phr of HNTs did not significantly affect the optical properties of the PLA films, whereas higher nanoclay contents reduced lightness and induced certain green and blue tonalities. The addition of 20 wt% of OLA increased ductility of the PLA film by nearly 75% and also decreased the glass transition temperature (Tg) by over 18 °C. The incorporation of 3 phr of HNTs into the OLA-containing PLA films delayed thermal degradation by 7 °C and additionally reduced the permeabilities to water and limonene vapors by approximately 8% and 47%, respectively. Interestingly, the highest barrier performance was attained for the unfilled PLA film plasticized with 10 wt% of OLA, which was attributed to a crystallinity increase and an effect of “antiplasticization”. However, loadings of 6 and 9 phr of HNTs resulted in the formation of small aggregates that impaired the performance of the blend films. The here-attained results demonstrates that the properties of ternary systems of PLA/OLA/HNTs can be tuned when the plasticizer and nanofiller contents are carefully chosen and the resultant nanocomposite films can be proposed as a bio-sourced alternative for compostable packaging applications.


2020 ◽  
Vol 145 ◽  
pp. 01036
Author(s):  
Guocheng Han ◽  
Rui Guo ◽  
Zhaohui Yu ◽  
Guangxue Chen

The applications of common-used antibacterial agents and biodegradable polymer materials in food packaging were reviewed. The research progress on biobased antibacterial agents (such as chitosan, plant essential oils, plant extracts, bacteriocins) in food packaging films synthesized from biodegradable polymer materials (such as starch and its derivatives, chitosan, cellulose, protein) was summarized. Most of the biodegradable antibacterial films are applied in the packaging of postharvest transportation and storage of fruits and vegetables. This work provides guidance to develop new intelligent food packaging materials featured by degradability, bacteriostasis and environmental protection.


2019 ◽  
Vol 59 ◽  
pp. 77-93 ◽  
Author(s):  
Siti Hajar Othman ◽  
Hee Nyia Ling ◽  
Rosnita A. Talib ◽  
Mohd Nazli Naim ◽  
Nazratul Putri Risyon ◽  
...  

The usage of biopolymers in developing biodegradable food packaging films that are sustainable and safe towards environment has been restricted because of the poor mechanical and barrier properties of the biopolymers. This study aims to enhance the limited properties of biopolymers particularly polylactic acid (PLA) for food packaging applications by investigating the effects of incorporating different types (montmorillonite (MMT) and halloysite) and concentrations (0–9 wt.%) of nanoclays on the mechanical, oxygen barrier, and transparency properties of the films. PLA with 3 wt.% concentration of nanoclays resulted in the optimum mechanical and oxygen barrier properties due to the strong interaction between nanoclays and torturous path length created by nanoclays respectively. Nevertheless, these properties reduced as more nanoclays (≥5 wt.%) was added into the films due to agglomeration of nanoclays. PLA incorporated with MMT nanoclay exhibited better properties compared to halloysite nanoclay due to the nanoclay structure in nature. Addition of 3 wt.% nanoclays into virtually transparent PLA film have only small effects on the transparency of the film whereby the reduction in light transmittance was only around 10%. This study is crucial to improve the feasibility of biopolymers usage for food packaging applications.


2017 ◽  
Vol 266 ◽  
pp. 84-89 ◽  
Author(s):  
Mohd Hasmizam Razali ◽  
Nur Arifah Ismail ◽  
Khairul Anuar Mat Amin

Nanostructured materials are a new class of materials which provide one of the greatest potentials for improving performance and extended capabilities of products in a number of applications. In particular nanostructured TiO2 was used as photocatalysts, gas sensor, solar cells and nanocomposite biomaterials. For each of these applications, aspects such as surface morphology, crystallinity and chemistry of the titania-based materials are the key parameters to be settled for the process optimization. A series of nanostructured TiO2 materials (TiO2 nanotubes, TiO2 nanorods, TiO2 nanoparticles) was synthesized using simple hydrothermal methods. X-Ray Diffraction (XRD), Field Emission Scanning Electron microscope (FESEM) and Brunauer–Emmett–Teller (BET) surface area characterization was carried out to study the properties of synthesized nanostructured TiO2 materials. The performance of synthesized nanostructured TiO2 was evaluated for various applications such as photocatalyst for methyl orange (MO) degradation and anti-bacterial thin film for biomedical and food packaging. Among the nanostructured TiO2 materials, TiO2 nanotubes shows the highest activity regardless of their applications. This is probably due to their nanotubular morphology in which provided high surface area materials. The surface area of TiO2 nanotubes was found to be 226.52 m2/g. The outer and inner diameters of nanotubes are 4 nm and 10 nm, respectively with several hundred nanometers in length. Anatase TiO2 phase structure and crystallinity of TiO2 nanotubes supports the good performances of the nanostructured materials.


Sign in / Sign up

Export Citation Format

Share Document