Differential and integral relations in the class of multi-index Mittag-Leffler functions

2018 ◽  
Vol 21 (1) ◽  
pp. 254-265 ◽  
Author(s):  
Jordanka Paneva-Konovska

Abstract As recently observed by Bazhlekova and Dimovski [1], the n-th derivative of the 2-parametric Mittag-Leffler function gives a 3-parametric Mittag-Leffler function, known as the Prabhakar function. Following this analogy, the n-th derivative of the (2m-index) multi-index Mittag-Leffler functions [6] is obtained, and it turns out that it is expressed in terms of the (3m-index) Mittag-Leffler functions [10, 11]. Further, some special cases of the fractional order Riemann-Liouville and Erdélyi-Kober integrals of the Mittag-Leffler functions are calculated and interesting relations are proved. Analogous relations happen to connect the 3m-Mittag-Leffler functions with the integrals and derivatives of 2m-Mittag-Leffler functions. Finally, multiple Erdélyi-Kober fractional integration operators, as operators of the generalized fractional calculus [5], are shown to relate the 2m- and 3m-parametric Mittag-Leffler functions.

2013 ◽  
Vol 13 (4) ◽  
pp. 42-53 ◽  
Author(s):  
Nina Nikolova ◽  
Emil Nikolov

Abstract : An essentially new class of repetitive fractional disturbance absorptive filters in disturbances absorbing control systems is proposed in the paper. Systematization of the standard repetitive fractional disturbance absorptive filters of this class is suggested. They use rational approximations of the operators for fractional integration in the theory of fractional calculus. The paper discusses the possibilities for repetitive absorbing of the disturbances with integer order filters and with fractional order filters. The results from the comparative analysis of their frequency characteristics are given below.


Open Physics ◽  
2013 ◽  
Vol 11 (10) ◽  
Author(s):  
Jordanka Paneva-Konovska

AbstractIn this paper we consider a family of 3m-indices generalizations of the classical Mittag-Leffler function, called multi-index (3m-parametric) Mittag-Leffler functions. We survey the basic properties of these entire functions, find their order and type, and new representations by means of Mellin-Barnes type contour integrals, Wright pΨq-functions and Fox H-functions, asymptotic estimates. Formulas for integer and fractional order integration and differentiations are found, and these are extended also for the operators of the generalized fractional calculus (multiple Erdélyi-Kober operators). Some interesting particular cases of the multi-index Mittag-Leffler functions are discussed. The convergence of series of such type functions in the complex plane is considered, and analogues of the Cauchy-Hadamard, Abel, Tauber and Littlewood theorems are provided.


Filomat ◽  
2016 ◽  
Vol 30 (7) ◽  
pp. 1931-1939 ◽  
Author(s):  
Junesang Choi ◽  
Praveen Agarwal

Recently Kiryakova and several other ones have investigated so-called multiindex Mittag-Leffler functions associated with fractional calculus. Here, in this paper, we aim at establishing a new fractional integration formula (of pathway type) involving the generalized multiindex Mittag-Leffler function E?,k[(?j,?j)m;z]. Some interesting special cases of our main result are also considered and shown to be connected with certain known ones.


2012 ◽  
Vol 22 (5) ◽  
pp. 5-11 ◽  
Author(s):  
José Francisco Gómez Aguilar ◽  
Juan Rosales García ◽  
Jesus Bernal Alvarado ◽  
Manuel Guía

In this paper the fractional differential equation for the mass-spring-damper system in terms of the fractional time derivatives of the Caputo type is considered. In order to be consistent with the physical equation, a new parameter is introduced. This parameter char­acterizes the existence of fractional components in the system. A relation between the fractional order time derivative and the new parameter is found. Different particular cases are analyzed


2020 ◽  
Vol 4 (3) ◽  
pp. 40
Author(s):  
Jocelyn Sabatier

In the field of fractional calculus and applications, a current trend is to propose non-singular kernels for the definition of new fractional integration and differentiation operators. It was recently claimed that fractional-order derivatives defined by continuous (in the sense of non-singular) kernels are too restrictive. This note shows that this conclusion is wrong as it arises from considering the initial conditions incorrectly in (partial or not) fractional differential equations.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2260 ◽  
Author(s):  
Virginia Kiryakova

Evaluation of images of special functions under operators of fractional calculus has become a hot topic with hundreds of recently published papers. These are growing daily and we are able to comment here only on a few of them, including also some of the latest of 2019–2020, just for the purpose of illustrating our unified approach. Many authors are producing a flood of results for various operators of fractional order integration and differentiation and their generalizations of different special (and elementary) functions. This effect is natural because there are great varieties of special functions, respectively, of operators of (classical and generalized) fractional calculus, and thus, their combinations amount to a large number. As examples, we mentioned only two such operators from thousands of results found by a Google search. Most of the mentioned works use the same formal and standard procedures. Furthermore, in such results, often the originals and the images are special functions of different kinds, or the images are not recognized as known special functions, and thus are not easy to use. In this survey we present a unified approach to fulfill the mentioned task at once in a general setting and in a well visible form: for the operators of generalized fractional calculus (including also the classical operators of fractional calculus); and for all generalized hypergeometric functions such as pΨq and pFq, Fox H- and Meijer G-functions, thus incorporating wide classes of special functions. In this way, a great part of the results in the mentioned publications are well predicted and appear as very special cases of ours. The proposed general scheme is based on a few basic classical results (from the Bateman Project and works by Askey, Lavoie–Osler–Tremblay, etc.) combined with ideas and developments from more than 30 years of author’s research, and reflected in the cited recent works. The main idea is as follows: From one side, the operators considered by other authors are cases of generalized fractional calculus and so, are shown to be (m-times) compositions of weighted Riemann–Lioville, i.e., Erdélyi–Kober operators. On the other side, from each generalized hypergeometric function pΨq or pFq (p≤q or p=q+1) we can reach, from the final number of applications of such operators, one of the simplest cases where the classical results are known, for example: to 0Fq−p (hyper-Bessel functions, in particular trigonometric functions of order (q−p)), 0F0 (exponential function), or 1F0 (beta-distribution of form (1−z)αzβ). The final result, written explicitly, is that any GFC operator (of multiplicity m≥1) transforms a generalized hypergeometric function into the same kind of special function with indices p and q increased by m.


Author(s):  
Igor Podlubny

AbstractIn this short communication, an attempt is made to continue beyond paragraph 29 of Euler’s famous paper in Vol. 5 of Comment. Acad. Sci. Petropol. (1738), using his style of storytelling to extrapolate the audacity of his approach from fractional differentiation to fractional integration. To add the authenticity and the amusement to the imitation, the emulated paragraphs 30–32 are first presented in Latin version followed by the English translation.This reconstruction aims to demonstrate that Euler could consider not only fractional differentiation, but also fractional-order integration and its inverse relationship with differentiation of the same fractional order.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
D. L. Suthar

In this article, the k-fractional-order integral and derivative operators including the k-hypergeometric function in the kernel are used for the k-Wright function; the results are presented for the k-Wright function. Also, some of special cases related to fractional calculus operators and k-Wright function are considered.


2011 ◽  
Vol 33 (4) ◽  
pp. 4302-4302 ◽  
Author(s):  
S.A. David ◽  
J.L. Linares ◽  
E.M.J.A. Pallone

Fractional order calculus (FOC) deals with integrals and derivatives of arbitrary (i.e., non-integer) order, and shares its origins with classical integral and differential calculus. However, until recently, it has been investigated mainly from a mathematical point of view. Advances in the field of fractals have revealed its subtle relationships with fractional calculus. Nonetheless, fractional calculus is generally excluded from standard courses in mathematics, partly because many mathematicians are unfamiliar with its nature and its applications. This area has emerged as a useful tool among researchers. One of the objectives of this paper is to discuss the usefulness of fractional calculus in applied sciences and engineering. In view of the increasing interest in the development of the new paradigm, another objective is to encourage the use of this mathematical idea in various scientific areas by means of a historical apologia for the development of fractional calculus.


Sign in / Sign up

Export Citation Format

Share Document