A multi-band planar antenna for biomedical applications

Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Kim Ho Yeap ◽  
Eileen Mei Foong Tan ◽  
Takefumi Hiraguri ◽  
Koon Chun Lai ◽  
Kazuhiro Hirasawa

Abstract We present the design of a compact tri-band adhesive planar antenna which operates as a gateway for biomedical applications. Operating in the Industrial, Scientific and Medical (ISM) band (2.4–2.5 GHz), the Institute of Electrical and Electronics Engineers (IEEE) 802.15.6 Wireless Body Area Network Ultra-Wide Band (WBAN UWB) (3.1–10.6 GHz) and the IEEE 802.11 Wireless Local Area Network or WLAN (WLAN) band (5.15–5.725 GHz), the antenna is useful in the context of body-signal monitoring. The ISM band is used for in-body communication with the implanted medical devices, whereas the WBAN and WLAN bands are for off-body communication with the base station and central medical server, respectively. We have designed our antenna to operate at 2.34/3.20/4.98 GHz. The simulation results show that the antenna has 10 dB bandwidths of 420 MHz (2.07–2.49 GHz), 90 MHz (3.16–3.25 GHz), and 460 MHz (4.76–5.22 GHz) to cover the ISM, WBAN, and WLAN bands, respectively. The proposed antenna is printed on a flexible Rogers RT/duroid 5880 epoxy substrate and it occupies a compact volume of 24 × 24 × 0.787 mm. The designed antenna is simulated using HFSS and the fabricated antenna is experimentally validated by adhering it to a human skin. The simulated and measured performance of the antenna confirms its omnidirectional radiation patterns and high return losses at the three resonant bands.

2019 ◽  
Vol 11 (4) ◽  
pp. 420-427
Author(s):  
Divya Chaturvedi ◽  
Arvind Kumar ◽  
S. Raghavan

AbstractIn this work, simple, low profile, compact quarter-mode substrate-integrated waveguide (QMSIW)-based antennas are proposed for Wireless Local Area Network (WLAN) at 5.2/5.5 GHz and Wireless Body Area Network (WBAN) at 5.8 GHz, respectively. By implementing QMSIW technique, the electrical size of the antenna is reduced up to 1/4th of the conventional circular SIW cavities. Thanks to the quarter mode concept, the antenna size is reduced significantly by preserving its dominant mode. The resonant frequency of the dominant mode TM010 is independently tuned at 5.2, 5.5, and 5.8 GHz after loading the QMSIW cavity with metalized via holes, subsequently. The on-body performance of the antenna is verified on pork tissues at 5.8 GHz and it is found to be insensitive with respect to surroundings. The measured gain and simulated efficiency of the proposed antenna at 5.8 GHz in free space are 4.8 dBi and 92%, while in the proximity of pork tissues values are 3.25 dBi and 57%, respectively. Moreover, the measurement results demonstrate a good matching with the simulation results.


Joint Rail ◽  
2004 ◽  
Author(s):  
Paul A. Flaherty

Ultra Wide Band (UWB) radio is a unique technology which combines a megabit wireless local area network with a centimeter-resolution radiolocation (RADAR) capability over distances less than 100 meters. A linear chain of UWB nodes can be used to create a hop-by-hop data transmission network, which also forms a RADAR “corridor” along the chain. By co-locating such a chain of nodes along a railroad right-of-way, precise information on the location and velocity of trains could be distributed throughout the corridor. In addition, the radar corridor would detect the introduction of track obstacles such as rocks, people, and automobiles, as well as shifted loads and other high-wide train defects. Finally, the network of nodes would enable off-train communications with payload sensors, locomotive computers, and could also provide wireless connectivity for passenger service.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Do-Gu Kang ◽  
Jinpil Tak ◽  
Jaehoon Choi

A low-profile repeater antenna with parasitic elements for on-on-off WBAN applications is proposed. The proposed antenna consists of a planar inverted-F antenna (PIFA), two parasitic elements, and a ground plane with a slot. Due to the slot, the impedance matching of the resonance formed by the PIFA is improved, which makes the proposed antenna operate in the 5.8 GHz industrial, scientific, and medical (ISM) band. To cover the 5.2 GHz wireless local area network (WLAN) band, a dual resonance characteristic is realized by the slot and the two parasitic elements. The first coupling between the PIFA and the slot not only makes the slot operate as a resonator, but also forms secondary coupling between the slot and the two parasitic elements. The two parasitic elements operate as an additional resonator due to secondary coupling. The antenna has the enhanced near surface radiation in the 5.8 GHz ISM band due to addition of the slot and radiation toward off-body direction in the 5.2 GHz WLAN band. In order to evaluate antenna performance considering the human body effect, the antenna characteristics on a human equivalent phantom are analyzed.


2020 ◽  
Vol 23 (2) ◽  
pp. 153-158
Author(s):  
Ahmed Lateef Khudaraham ◽  
Dhirgham Kamal Naji

This paper presents a dual wide-band band pass filter (DWB-BPF) by using two parallel, symmetrical micro-strip lines loaded by a centered resonator, consisting of a T- and a triangle-shaped geometry, attached at the lower and upper ends, respectively. The filter reveals good performance and both the passbands can be independently controlled by adjusting specific parts of the filter. The proposed BPF is simulated by using CST microwave studio package and the simulated result is verified experimentally with good agreement between the two results.  The fabricated prototype BPF demonstrates two passbands located at 2.3 GHz and 6.35 GHz center frequencies with 39% and 23.6% of 3-dB fractional bandwidth (FBW), respectively and a good insertion and return losses. The designed BPF can be targeted for wireless local area network (WLAN), WIFI and satellite communication systems.


2015 ◽  
Vol 9 (1) ◽  
pp. 133-141 ◽  
Author(s):  
Sandeep Kumar Palaniswamy ◽  
Malathi Kanagasabai ◽  
Shrivastav Arun Kumar ◽  
M. Gulam Nabi Alsath ◽  
Sangeetha Velan ◽  
...  

This paper presents the design, testing, and analysis of a clover structured monopole antenna for super wideband applications. The proposed antenna has a wide impedance bandwidth (−10 dB bandwidth) from 1.9 GHz to frequency over 30 GHz. The clover shaped antenna with a compact size of 50 mm × 45 mm is designed and fabricated on an FR4 substrate with a thickness of 1.6 mm. Parametric study has been performed by varying the parameters of the clover to obtain an optimum wide band characteristics. Furthermore, the prototype introduces a method of achieving super wide bandwidth by deploying fusion of elliptical patch geometries (clover shaped) with a semi elliptical ground plane, loaded with a V-cut at the ground. The proposed antenna has a 14 dB bandwidth from 5.9 to 13.1 GHz, which is suitable for ultra wideband (UWB) outdoor propagation. The prototype is experimentally validated for frequencies within and greater than UWB. Transfer function, impulse response, and group delay has been plotted in order to address the time domain characteristics of the proposed antenna with fidelity factor values. The possible applications cover wireless local area network, C-band, Ku-band, K-band operations, Worldwide Interoperability for Microwave Access, and Wireless USB.


2016 ◽  
Vol 9 (3) ◽  
pp. 607-611 ◽  
Author(s):  
Tae-Soon Chang ◽  
Sang-Won Kang

This paper proposes a planar monopole antenna with a parabolic edge shape. This antenna, which has notch characteristics in the wireless local area network (WLAN) band, can be miniaturized. To obtain the notch characteristics in the WLAN band, a slot with a parabolic edge shape identical to that of the monopole structure was implemented. Because the planar monopole antenna with a parabolic edge shape possesses characteristics similar to those in self-complementary structure conditions, it can be miniaturized by reducing the antenna components at the same proportion. For the antenna fabrication, an FR4 dielectric substrate with a dielectric constant of 4.7 was used. The size of the miniaturized antenna that satisfies the ultra-wide band requirement was 15.6 × 18.6 mm2, and the 10-dB band was 3.013–12.515 GHz. At each frequency, the radiation pattern was similar to that of a dipole antenna.


2016 ◽  
Vol 5 (3) ◽  
pp. 101-108 ◽  
Author(s):  
Bashir Olaniyi Sadiq

The objective of this paper was to design and analyze a dual wide band compact antenna for wireless application. Microstrip patch antenna limitation was overcome by using fractal geometry. The proposed antenna was designed with a radius of 15mm on a FR4 lossy substrate with relative permittivity of 4.4 and loss factor of 0.025. Measurement result showed that the antenna has a dual band of operation with bandwidth for return loss below -10dB of 1.84GHz (2.2GHz-4.07GHz) and 2GHz (6GHz-8GHz) which can be applied to wireless local area network (WLAN) and Ultra wide band applications.


2020 ◽  
Vol 2 (1) ◽  
pp. 1-12 ◽  
Author(s):  
V N Koteswara Rao Devana ◽  
Dr. A. Maheswara Rao

A compact triple band notched tapered microstrip fed Ultrawideband (UWB) antenna for wireless communication applications in C, X and Ku bands is proposed. The antenna having a compact size of 16×26 mm2, consisting of an elliptical patch and a truncated ground structure to achieve impedance of -10 dB bandwidth of 3.1 GHz to 18.8 GHz. Triple band notched characteristics are obtained from 3.7 GHz to 4.2 GHz for C band, 5.18 GHz to 5.85 GHz for Wireless Local Area Network (WLAN) and 8 GHz to 8.4 GHz for X band applications associated with the satellite communication, fabricating three inverted slots that are U-shaped in the patch of elliptical form. Good agreement between theoretical and the practical results achieved through simulation of the antenna proposed is a compatible candidate for portable ultra-wide band applications.


Volume 3 ◽  
2004 ◽  
Author(s):  
Didier Bozec ◽  
Martin Robinson ◽  
Dave Pearce ◽  
Chris Marshmann

In recent years, advancements in the field of wireless communications have led to a proliferation of devices emitting and receiving radio frequencies in the 2.4-gigahertz (GHz) frequency region, also known as the 2.4GHz unlicensed Industrial, Scientific and Medical (ISM) band. These recent advances in wireless technology such as Wireless Local Area Network (WLANs) (e.g. 802.11 (Wi-Fi), Wireless Person Area Networks (WPANs) including short-range wireless systems such as Bluetooth, and wireless telemetry equipment for patient monitoring, offer great opportunities for more advanced, efficient and cost effective communications in healthcare facilities. However, the popularity of such devices has the potential to lead to electromagnetic interference (EMI) between electronic transmitting devices and medical equipment, and to disruption in essential communications caused by interference from other devices using the increasingly overloaded ISM band. Problems occur since the EMI could lead to subtle malfunctions of medical equipment that might go undetected for long period. Most importantly, such EMI has the potential to cause malfunction that could impact upon patient safety.


Sign in / Sign up

Export Citation Format

Share Document