An octagonal ultra-wideband double slit antenna for WiMAX and WLAN rejection

Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bhakkiyalakshmi Ramakrishnan ◽  
Vasanthi Murugiah Sivashanmugham

Abstract This article proposes a dual band rejected double slits-based planar octagonal microstrip antenna for Ultra-Wideband (UWB) applications. The antenna built by an edge trimmed partial ground and an octagonal microstrip patch with a horizontal and an inclined rectangular slit. The slits are made to remove the interfering frequency bands WiMAX and WLAN from UWB band. The designed antenna without slits operates on the frequency range 2.78–10.78 GHz with a fractional bandwidth of 119% which includes the UWB frequency band 3.1–10.6 GHz. The antenna with diagonal inclined slit notches the band 4.4–5.83 GHz which excluded WLAN frequency range and shift the starting frequency of UWB band to the right from 2.78 to 3.26 GHz. The antenna with both horizontal and inclined slits further shifts the starting frequency from 3.26 to 3.619 GHz, eliminating the WiMAX band. The excluded bands show the VSWR value greater than 2 dBi whereas the rest of the band has less than 2 dBi. The proposed antenna results in nearly omnidirectional radiation pattern, 6.2 dBi peak gain and 85% radiation efficiency.

2018 ◽  
Vol 7 (2.16) ◽  
pp. 11
Author(s):  
Sanjeev Kumar ◽  
Ravi Kumar ◽  
Rajesh Kumar Vishwakarma

A microstrip antenna with a circular disc design and modified ground is proposed in this paper. Circular shapes of different size have been slotted out from the radiating patch for achieving extended ultra wideband (UWB) with GSM/Bluetooth bands with maximum bandwidth of 17.7 GHz (0.88-18.6 GHz). Further, characteristic of dual notch band is achieved, when a combination of T and L-shaped slots are etched into the circular disc and ground plane respectively. Change in length of slots is controlling the notch band characteristics. The proposed antenna has rejection bandwidth of 1.3-2.2 GHz (LTE band), 3.2-3.9 GHz (WiMAX band) and 5.2-6.1 GHz (WLAN band) respectively. It covers the frequency range of 0.88-18.5 GHz with the VSWR of less than 2. Also, an equivalent parallel resonant circuit has been demonstrated for band notched frequencies of the designed antenna. The gain achieved by the proposed antenna is 6.27 dBi. This antenna has been designed, investigated and fabricated for GSM, Bluetooth, UWB, X and Ku band applications. The stable gain including H & E-plane radiation pattern with good directivity and omnidirectional behavior is achieved by the proposed antenna. Measured bandwidths are 0.5 GHz, 0.8 GHz, 1.1 GHz and 11.7 GHz respectively. 


2020 ◽  
Vol 17 (4) ◽  
pp. 1216
Author(s):  
Wa'il A. Godaymi Al-Tumah ◽  
Raed Shaaban ◽  
Zeki Ahmed

In this work, a simulated study was carried out for designing a novel spiral rectangular patch of microstrip antenna that is used in ultra-wideband applications by using a high frequency structure simulator software (HFSS). A substrate with dielectric constant of 4.4 and height 2.10 mm (commercial substrate height available is about 0.8-1.575 mm) has been used for the design of the proposed antenna. The design basis for enhancing bandwidth in the frequency range 6.63 - 10.93 GHz is based on increasing the edge areas that positively affect the antenna's efficiency. This design makes the designed antenna cost less by reducing the area of the patch. It has been noticed that the bandwidth of the antenna under this study is increasing to 4.30 GHz or 61% compared with 3.6% for the standard rectangular microstrip antenna with the same dimensions of the proposed antenna. The antenna also maintains the voltage standing wave ratio of 1.09 at resonant frequency 7.07 GHz, return loss -27.07 dB, and the amount of impedance in real and imaginary parts 51.5Ω and 3.3Ω, respectively.


Author(s):  
M. Saravanan ◽  
R. Kalidoss ◽  
B. Partibane ◽  
K. S. Vishvaksenan

Abstract The design, analysis, fabrication, and testing of a four-port multiple-input multiple-output (MIMO) antenna is reported in this paper for automotive communications. The MIMO antenna is constructed using the basic antenna element exploiting a slot geometry. Two such antennas are developed on the same microwave laminate to develop a two-port MIMO antenna. Two such microwave laminates are interlocked to create the four-port MIMO scheme. The most distinct feature of the proposed architecture is that the inter-port isolation is well-taken care without the need for an external decoupling unit. The four-port MIMO antenna has an overall volume of 32 × 15 × 32 mm3. The prototype MIMO antenna is fabricated and the measurements are carried out to validate the simulation results. The antenna offers ultra-wideband (UWB) characteristics covering the frequency range of 2.8–9.5 GHz. The average boresight gain of the antenna ranges from 3.2 to 5.41 dBi with the peak gain at 8 GHz. The simulated efficiency of the antenna is greater than 73% within the operating bandwidth. The MIMO parameters such as envelope correlation coefficient, diversity gain, and mean effective gain are evaluated and presented. The appropriateness of the proposed antenna for deployment in the shark fin housing of the present-day automobiles is verified using on-car performance estimation.


Frequenz ◽  
2016 ◽  
Vol 70 (11-12) ◽  
Author(s):  
D. Khedrouche ◽  
T. Bougoutaia ◽  
A. Hocini

AbstractIn this paper, a miniaturized microstrip patch antenna using a negative index metamaterial with modified split-ring resonator (SRR) unit cells is proposed for ultra-wideband (UWB) applications. The new design of metamaterial based microstrip patch antenna has been optimized to provide an improved bandwidth and multiple frequency operations. All the antenna performance parameters are presented in response-graphs. Also it is mentioned that the physical dimensions of the metamaterial based patch antenna are very small, which is convenient to modern communication. A 130 % bandwidth, covering the frequency band of 2.9–13.5 GHz, (for return loss less than or equal –10 dB) is achieved, which allow the antenna to operate in the Federal Communication Commission (FCC) band. In addition, the antenna has a good radiation pattern in the ultra-wide band spectrum, and it is nearly omnidirectional.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Thomas Kaufmann ◽  
Akhilesh Verma ◽  
Van-Tan Truong ◽  
Bo Weng ◽  
Roderick Shepherd ◽  
...  

A planar antenna for ultra-wideband (UWB) applications covering the 3.1–10.6 GHz range has been designed as a test bed for efficiency measurements of antennas manufactured using polymer conductors. Two types of conductive polymers, PEDOT and PPy (polypyrrole), with very different thicknesses and conductivities have been selected as conductors for the radiating elements. A comparison between measured radiation patterns of the conductive polymers and a copper reference antenna allows to estimate the conductor losses of the two types of conductive polymers. For a 158 μm thick PPy polymer, an efficiency of almost 80% can be observed over the whole UWB spectrum. For a 7 μm thick PEDOT layer, an average efficiency of 26.6% demonstrates, considering the room for improvement, the potential of this type of versatile materials as flexible printable alternative to conductive metallic paints. The paper demonstrates that, even though the PEDOT conductivity is an order of magnitude larger than that of PPy, the thicker PPy layer leads to much higher efficiency over the whole UWB frequency range. This result highlights that high efficiency can be achieved not only through high conductivity, but also through a sufficiently thick layer of conductive polymers.


2016 ◽  
Vol 9 (5) ◽  
pp. 1179-1184 ◽  
Author(s):  
Kalyan Mondal ◽  
Partha Pratim Sarkar

In this work, microstrip antenna with W- and V-shaped radiating patches have been proposed. Here square- and circular-shaped modified ground planes have been designed by poly tetra fluoro ethylene (PTFE) substrate with dielectric constant 2.4. Broadband with high gain is obtained by optimum selection of radiating patch with modified ground plane. The ground planes are modified by loading a U-shaped slot. The simulated and measured results are compared. Considering −10 dB impedance bandwidth maximum frequency band of 6.97 GHz (3.04–10.01 GHz) with percentage bandwidth of 106.8% is achieved. The proposed antenna exhibits maximum peak gain of 5.1 dBi. The simulation and measurement have been done by Ansoft designer software and vector network analyzer.


YMER Digital ◽  
2021 ◽  
Vol 20 (12) ◽  
pp. 790-807
Author(s):  
N Parthiban ◽  
◽  
M Mohamed Ismail ◽  

Microstrip antenna is an essential choice for Ultra Wide Band (UWB) applications of its light weight, low profile and easy to form antenna arrays. However, the design of microstrip patch antenna bandwidth is greatly affects by the dielectric substrate material (FR4). In this research, the bandwidth enhancement of MPA was designed by minimizing the dimension of Defected GP (DGP) in GP for Ultra Wide Band wireless applications. But, the antenna design complexity increases with the number of an operating frequency band. In this research, the MPA was designed as small as size of 10×13×1.6 mm and operates on frequency band between 3.1GHz to 10.6GHz for VSWR less than 2. The microstrip patch antenna was designed at 3.1GHz to 10.6GHz using High-Frequency Structure Simulator (HFSS) software. The simulation result shows that the proposed microstrip patch antenna obtained <-10dB of return loss from 3.1GHz to 10.6GHz throughout the frequency range. The measured result proves that the proposed microstrip patch antenna has better characteristics to fulfill the requirements of UWB applications


Sign in / Sign up

Export Citation Format

Share Document