scholarly journals Analysis and prediction of LUCC change in Huang-Huai-Hai river basin

2020 ◽  
Vol 12 (1) ◽  
pp. 1406-1420
Author(s):  
Jianwei Wang ◽  
Kun Wang ◽  
Tianling Qin ◽  
Hanjiang Nie ◽  
Zhenyu Lv ◽  
...  

AbstractLand use/cover change plays an important role in human development and environmental health and stability. Markov chain and a future land use simulation model were used to predict future change and simulate the spatial distribution of land use in the Huang-Huai-Hai river basin. The results show that cultivated land and grassland are the main land-use types in the basin, accounting for about 40% and 30%, respectively. The area of cultivated land decreased and artificial surfaces increased from 1980 to 2010. The degree of dynamic change of land use after the 1990s was greater than that before the 1990s. There is a high probability of exchange among cultivate land, forest and grassland. The area of forest decreased before 2000 and increased after 2000. Under the three emission scenarios (RCP2.6, RCP4.5, and RCP8.5) of IPSL-CM5A-LR climate model, the area of cultivated land will decrease and that of grassland will increase in the upstream area while it will decrease in the downstream area. The above methods and rules will be of great help to future land use planning.

Land ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 136 ◽  
Author(s):  
Sekela Twisa ◽  
Manfred F. Buchroithner

Anthropogenic activities have substantially changed natural landscapes, especially in regions which are extremely affected by population growth and climate change such as East African countries. Understanding the patterns of land-use and land-cover (LULC) change is important for efficient environmental management, including effective water management practice. Using remote sensing techniques and geographic information systems (GIS), this study focused on changes in LULC patterns of the upstream and downstream Wami River Basin over 16 years. Multitemporal satellite imagery of the Landsat series was used to map LULC changes and was divided into three stages (2000–2006, 2006–2011, and 2011–2016). The results for the change-detection analysis and the change matrix table from 2000 to 2016 show the extent of LULC changes occurring in different LULC classes, while most of the grassland, bushland, and woodland were intensively changed to cultivated land both upstream and downstream. These changes indicate that the increase of cultivated land was the result of population growth, especially downstream, while the primary socioeconomic activity remains agriculture both upstream and downstream. In general, net gain and net loss were observed downstream, which indicate that it was more affected compared to upstream. Hence, proper management of the basin, including land use planning, is required to avoid resources-use conflict between upstream and downstream users.


Land ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 250 ◽  
Author(s):  
Na Liao ◽  
Xinchen Gu ◽  
Yuejian Wang ◽  
Hailiang Xu ◽  
Zili Fan

Environmental degradation is closely related to unreasonable land use behaviors by farmers. In this study, participatory rural assessment (PRA) is used to conduct a detailed survey of farmers and plots and to collect relevant natural and social statistics. The accuracy of remote sensing data is verified by comparative analysis, and the change in status of various land use types in each research period is reflected by the change in the dynamic degree and change in range. We examine how farmers’ attitudes and behaviors affect environmental degradation, using a sample of 403 farmers in China’s Manas River Basin. Due to age, education, income and other differences, farmers’ land use behaviors, as well as their attitude toward and feelings about environmental degradation, vary greatly. We found that most farmers considered the environment to be very important to their lives and crop production, but nearly 21% did not know the causes of environmental degradation and nearly 8% did not consider the environmental impacts of their crop production activities. A new model for oasis expansion—land integration—is presented here. This model can increase the area of cultivated land, reduce cultivated land fragmentation, save irrigation water, improve the field microclimate and form a good ecological cycle. Through land transfer, ecological compensation and ecological protection incentives, the government should guide farmers’ land use behaviors toward cooperation with the river basin’s ecological protection and land use planning.


2012 ◽  
Vol 518-523 ◽  
pp. 6004-6007
Author(s):  
Xing Yuan Xiao ◽  
Tao Jiang

Using GIS and such models as dynamic degree, analyzed the land-use change in Qingdao according to the statistics of land-use data from 2000 to 2010 years and based on these, the author selects eight natural and socio-economic indexes, and takes districts as the study unit to calculate the driving force indexes with the fuzzy comprehensive evaluation method, and makes the spatial-division thematic maps of the driving forces which cause the land-use change in this region base on GIS. The results show that in Qingdao the land-use types which have the largest change rate is residential area and mining sites, followed by the unused land, water and cultivated land, and the garden plot is the smallest. There is a decreasing of cultivated land and unused land while other types have increased; because of a large base number, cultivated land reduces most among all land-use types. There exists a big spatial difference among these driving forces for land-use change. According the driving force indexes we divided them into four regions.


Author(s):  
Xin Zhang ◽  
Lin Zhou ◽  
Yuqi Liu

Changes in landscape patterns in a river basin play a crucial role in the change on load of non-point source pollution. The spatial distribution of various land use types affects the transmission of non-point source pollutants on the basis of source-sink theory in landscape ecology. Jiulong River basin in southeast of China was selected as the study area in this paper. Aiming to analyze the correlation between changing landscape patterns and load of non-point source pollution in this area, traditional landscape metrics and the improved location-weighted landscape contrast index based on the minimum hydrological response unit (HRULCI) were applied in this study, in combination with remote sensing and geographic information system (GIS) technique. The results of the landscape metrics showed the enhanced fragmentation extent and the decreasing polymerization degree of the overall landscape in the watershed. High values of HRULCI were concentrated in cultivated land, while low HRULCI values mostly appeared in forestland, indicating that cultivated land substantially enhanced non-point source pollution, while forestland inhibited the pollution process.


2020 ◽  
Vol 17 (2) ◽  
pp. 1-13
Author(s):  
C. Chikere-Njoku

The study was conducted to investigate fertility status under four different land use types (oil palm plantation, pineapple orchard, cassava cultivated land and fallow land use system) in Umuekem, Ohaji/Egbema of Imo State, Nigeria. Composite samples were collected from various depths (10-15cm, 15-30cm, 30-45cm) across these land use patterns and analyzed in the laboratory using the standard procedure. Data generated were subjected to statistical analysis. Results obtained showed significant differences (p ≥ 0.05) in silt-clay ratio, bulk density, total porosity, water holding capacity, soil pH, organic carbon, available phosphorus, TN and ECEC across the four land use types studied. The soils were predominantly loamy sand surface and sandy clay loam in the subsoil exception of pineapple orchard with sandy loam topsoil over sandy clay loam subsoil. The silt clay ratio (SCR) showed ranges of 0.10-0.30, 0.10-0.36, 0.07 – 0.30, and 0.06- 0.20 in land use types of oil palm plantation, pineapple orchard, cassava cultivated land and fallow land respectively. The bulk density ranged of (1.61 – 1.77 g/cm3) for oil palm, (1.34 – 1.58 g/cm3) for pineapple (1.42 – 1.49 g/cm3) cassava and (1.45 – 1.48 g/cm3) in forest land use system. The soils of the four land use types were generally acidic. The mean values of soil pH (H20) were oil palm plantation (5.11), pineapple orchard (5.03), cassava cultivated land (5.35) and fallow land (5.40). The soil pH recorded low variation in all the land use types. The organic carbon and total nitrogen recorded high variation (>52.57% < 85.67%, >79.19 < 95.77) in all the different land use types. Calcium-magnesium ratio (Ca: Mg) recorded high variation (37.36%) in forest land use system, low variation (18.77%) in pineapple orchard and moderate in cassava (27.51%) and oil palm plantation (28.23). The low Ca: Mg ratio inhibits uptake and causes Ca deficiency thereby resulting in low fertility status of the soil. C: P recorded high variation (≥ 53.77% ≤ 77.73%) in all the studied land use types. O.C correlated positively and highly significant with available phosphorus, ECEC and T.N. The findings also indicated that bulk density correlated positively with ECEC and percentage base saturation. It is recommended that land use approach should be adopted for effective and sustainable management of the soil fertility. Keywords: Fertility status, Soils, Land use types


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9386
Author(s):  
Yanlin Li ◽  
Chunmei Zeng ◽  
Meijun Long

The diversity and community distribution of soil bacteria in different land use types in Yangtze River Basin, Chongqing Municipality were studied by using Illumina MiSeq analysis methods. Soil physical and chemical properties were determined, and correlation analyses were performed to identify the key factors affecting bacterial numbers and α-diversity in these soils. The results showed that the soil physical and chemical properties of different land use types decrease in the order: mixed forest (M2) > pure forest (P1) > grassland (G3) > bare land (B4). There were significant differences in bacterial diversity and communities of different land use types. The diversity of different land use types showed the same sequence with the soil physical and chemical properties. The abundance and diversity of bacterial in M2 and P1 soils was significantly higher than that in G3 and B4 soils. At phylum level, G3 and B4 soils were rich in only Proteobacteria and Actinobacteria, whereas M2 and P1 soils were rich in Proteobacteria, Actinobacteria and Firmicutes. At genus level, Faecalibacterium and Agathobacter were the most abundant populations in M2 soil and were not found in other soils. Pearson correlation analysis showed that soil moisture content, pH, AN, AP, AK and soil enzyme activity were significantly related to bacterial numbers, diversity and community distribution.


2020 ◽  
Vol 20 (3) ◽  
pp. 1046-1058
Author(s):  
Fan Gao ◽  
Bing He ◽  
Songsong Xue ◽  
Yizhen Li

Abstract Based on the Soil and Water Assessment Tool (SWAT) model, the monthly runoff processes of two land-use types in 2000 and 2015 were simulated in this paper. The relationship between runoff and landscape pattern was analyzed, and the spatial correlation between runoff and landscape pattern analyzed using the geographic weighted regression model combined with the change of landscape pattern in the study area from 2000 to 2015. The results show the following. (1) The SWAT model can simulate the monthly runoff processes in the catchment area of the Ulungur River Basin (URB) under different land-use types for 2000 and 2015, but the simulation effect in 2000 was found to be better than that in 2015. (2) From 2000 to 2015, the area of woodland and grassland decreased. Runoff was positively correlated with woodland, grassland, largest patch index, mean patch area (AREA_MN), and contagion index, and negatively correlated with others. This indicates that the landscape fragmentation of URB was aggravated in 2000–2015, the landscape balance was destroyed, and the ability of rainfall interception and water conservation was weakened. (3) Landscape pattern indicators of grassland had a negative spatial impact on URB runoff, and the northern region of URB was more severely affected in 2015 than in 2000. AREA_MN landscape pattern index had a positive impact on runoff in the northern part of URB, and the positive impact in northern URB in 2000 was better than that in 2015.


Sign in / Sign up

Export Citation Format

Share Document