scholarly journals Discharge of a Triangular Orifice under Free Flow Conditions

2021 ◽  
Vol 68 (1) ◽  
pp. 19-28
Author(s):  
Anna Sosnowska

Abstract In this paper, flow through a free triangular orifice is considered. The comparison of two formulas was conducted for discharge calculations: a large orifice formula and a small orifice formula. The results show that, above a certain value of upstream head to orifice height ratio there is no need for small-large formula discrimination. The differences in the outcomes for the two formulas are negligible for upstream head to orifice height ratios greater than 3. This means that a small orifice formula can be used instead of a large orifice formula. Calculations were performed for different variants of triangle orientation (with tip downwards, sidewards and upwards) as well as for different dimensions of orifice (equilateral and isosceles). The calculations also included different submergence levels of the upper edge of the orifice and variable dimensions of the orifice with constant upstream head. Neither of these conditions affect the relative deviation values for small and large orifice formulas.

1960 ◽  
Vol 64 (594) ◽  
pp. 359-362 ◽  
Author(s):  
P. G. Morgan

In many cases of the flow through porous screens, one may consider it to be made up of a number of jets passing through the openings of the screen. These jets are separated by a series of wakes behind the solid parts of the screen. The majority of investigations on the flow through such screens have been concerned with the measurement of pressure drop and its variation with different flow conditions; it has been assumed that the pressure is discontinuous at the screen itself and that the pressure drop coefficient Δp/½ρυ2 provides sufficient information, where Δp is the pressure drop across the screen, ρ the density of the fluid, and υ the velocity of approach to the screen.


2014 ◽  
Vol 695 ◽  
pp. 393-397
Author(s):  
Elsa Syuhada Abdull Yamin ◽  
Nor Azwadi Che Sidik

The permeability of the blood in the artificial cancellous are affected by certain morphological aspects that include pore diameter, pore size, porosity and the bone surface area. In this study, computational fluid dynamics method is used to study the fluid flow through the cancellous structure. Result of the present work show that geometries with the same porosity and overall volume can have different permeability due to the differences in bone surface area. The hexahedron geometry has the highest permeability under stimulated blood flow conditions, where the cylindrical geometry has the lowest. Linear relationship is found between permeability and the two physical properties, bone surface area and the pore size.


1960 ◽  
Vol 64 (590) ◽  
pp. 103-105
Author(s):  
P. G. Morgan

The flow through porous screens has been widely studied from both the theoretical and experimental points of view. The most widely used types of screen are the wire mesh and the perforated plate, and the majority of the literature has been concerned with the former. Several attempts have been made to correlate the parameters governing the flow through such screens, i.e. the pressure drop, the flow conditions and the geometry of the mesh.


2015 ◽  
Vol 60 (1) ◽  
pp. 85-93 ◽  
Author(s):  
P. Migas

Abstract The rheological properties of liquid and semi-solid systems of slag and hot metal in a blast furnace are extremely important from the perspective of their dripping in the unit. The rheological nature and the values of the dynamic viscosity coefficient of liquid and semi-solid phases - slag and hot metal - determine the permeability of the zones in which those systems exist. The modelling of dripping processes and e.g. static and dynamic holding/retention of liquid in the bed, requires an accurate description of the rheological behaviour of slag and iron systems. Determining the liquid flow through the lump bed of the blast furnace is based on the assumption that liquids in the unit in the whole range of their occurrence are similar to a Newtonian ideal liquid. This study presents an analysis of the findings of high-temperature rheometric measurements of CaO-SiO2-Al2O3-MgO systems, liquid, semi-solid slags of the blast furnace type doped with TiO2 and solids in the form of TiN. The tests were performed within a temperature range of 1310-1490°C. Also measurement results for glycerol solutions with concentrations of 86% and 100% at the ambient temperature, simulating blast furnace slags with various contents of solids - PC, anthracite - are presented.


1959 ◽  
Vol 63 (584) ◽  
pp. 474-475 ◽  
Author(s):  
P. G. Morgan

The Flow of Fluids through screens has been widely studied with particular importance being attached to the measurement of the pressure drop caused by a screen and its relation to the screen geometry and the flow conditions. The majority of the investigations have been carried out on wire gauze screens mounted in ducts with air passing through them, the static pressure being measured on either side of the gauze. Attempts have been made by Weighardt Annand and Grootenhuisto correlate the gauze geometry with the pressure drop and to enable the pressure loss over a given screen and with given flow conditions to be predicted.


2007 ◽  
Vol 334-335 ◽  
pp. 437-440 ◽  
Author(s):  
Do Hoon Lee ◽  
Joon Ho Lee ◽  
Woo I. Lee

Liquid molding processes are becoming more popular among the composite manufacturing industries due to their versatility and economy among other merits. In analyzing the flow during the process, permeability is the most important parameter. Permeability has been regarded as a property of the porous medium. However, in many practical cases, the value may vary depending on the flow conditions such as the flow rate. It is speculated that this deviation is caused by inhomogeneous microstructure of the medium. In this study, numerical simulations as well as experimental measurements have been done to investigate the cause of deviation. Microstructure of porous medium was modeled as an array of porous cylinders. Resin flow through the array was simulated numerically. Simulations were performed for two different flow conditions, namely saturated flow and unsaturated flow. Based upon the results, permeabilities were estimated and compared for the two flow conditions. In addition, a model was proposed to predict the permeability for different flow conditions. Results showed that experimental data were in agreement with the prediction by the model.


2010 ◽  
Vol 4 (2) ◽  
Author(s):  
Henk Versteeg ◽  
Abdul Qaiyum Shaik

Pressurized metered-dose inhalers (pMDIs) have been the most effective therapeutic treatment for controlling lung diseases such as asthma and COPD. The flow through a two-orifice system of pMDI is very complex and poorly understood. Previous experimental work has shown that metastability may play a significant role in determining the flow conditions inside pMDIs. In this paper, we present the findings of a homogeneous equilibrium model with those of a delayed equilibrium model (DEM) accounting for propellant metastability. These results are compared with the available experimental and numerical predictions Further, the DEM was applied with HFA propellants R134A and R227, and the results were compared with traditional propellant R12.


Sign in / Sign up

Export Citation Format

Share Document