scholarly journals Moisture-dependent orthotropic tension-compression asymmetry of wood

Holzforschung ◽  
2013 ◽  
Vol 67 (4) ◽  
pp. 395-404 ◽  
Author(s):  
Tomasz Ozyhar ◽  
Stefan Hering ◽  
Peter Niemz

Abstract The influence of moisture content (MC) on the tension-compression (Te-Co) asymmetry of beech wood has been examined. The elastic and strength parameters, including Te and Co Young’s moduli, Poisson’s ratios, and ultimate and yield stress values, were determined and compared in terms of different MCs for all orthotropic directions. The results reveal a distinctive Te-Co strength asymmetry with a moisture dependency that is visualized clearly by the Te to Co yield stress ratio. The Te-Co asymmetry is further shown by the inequality of the elastic properties, known as the “bimodular behavior”. The latter is proven for the Young’s moduli values in the radial and tangential directions and for individual Poisson’s ratios. Although the bimodularity of the Young’s moduli is significant at low MC levels, there is no evidence of moisture dependency on the Te-Co asymmetry of the Poisson’s ratios.

Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 635 ◽  
Author(s):  
Christa de Jonge ◽  
Helena Kolken ◽  
Amir Zadpoor

The concept of “mechanical metamaterials” has become increasingly popular, since their macro-scale characteristics can be designed to exhibit unusual combinations of mechanical properties on the micro-scale. The advances in additive manufacturing (AM, three-dimensional printing) techniques have boosted the fabrication of these mechanical metamaterials by facilitating a precise control over their micro-architecture. Although mechanical metamaterials with negative Poisson’s ratios (i.e., auxetic metamaterials) have received much attention before and have been reviewed multiple times, no comparable review exists for architected materials with positive Poisson’s ratios. Therefore, this review will focus on the topology-property relationships of non-auxetic mechanical metamaterials in general and five topological designs in particular. These include the designs based on the diamond, cube, truncated cube, rhombic dodecahedron, and the truncated cuboctahedron unit cells. We reviewed the mechanical properties and fatigue behavior of these architected materials, while considering the effects of other factors such as those of the AM process. In addition, we systematically analyzed the experimental, computational, and analytical data and solutions available in the literature for the titanium alloy Ti-6Al-4V. Compression dominated lattices, such as the (truncated) cube, showed the highest mechanical properties. All of the proposed unit cells showed a normalized fatigue strength below that of solid titanium (i.e., 40% of the yield stress), in the range of 12–36% of their yield stress. The unit cells discussed in this review could potentially be applied in bone-mimicking porous structures.


2019 ◽  
Vol 33 (05) ◽  
pp. 1950047
Author(s):  
Ruike Yang ◽  
Bao Chai ◽  
Qun Wei ◽  
Minhua Xue ◽  
Ye Zhou

For novel [Formula: see text]-Si3Sb4, pseudocubic-Si3Sb4, cubic-Si3Sb4 and [Formula: see text]-Si3Sb4, the structural, elastic and electronic properties are investigated using first-principles density functional theory (DFT). The elastic constants and phonon dispersion spectra show that they are mechanically and dynamically stable. The bulk moduli, shear moduli, Young’s moduli, Poisson’s ratios and Pugh ratios for the four compounds have been calculated. The bulk moduli indicate that the bond strength of [Formula: see text]-Si3Sb4 is stronger than others. The values of the Poisson’s ratios and Pugh ratios show that pseudocubic-Si3Sb4 is the stiffest among the four Si3Sb4 compounds. Tetragonal Si3Sb4 are more brittle than cubic Si3Sb4. For the four Si3Sb4 compounds, the elastic anisotropies are analyzed via the anisotropic indexes and the 3D surface constructions. The [Formula: see text]-Si3Sb4 elastic anisotropy is stronger than others and the [Formula: see text]-Si3Sb4 is weaker than others. The calculated band structures show that they exhibit metallic features. The results of their TDOS show that there are many similarities. The peaks of TDOS are derived from the contributions of Si “s”, Si “p”, Sb “s” and Sb “p” states.


2007 ◽  
Vol 334-335 ◽  
pp. 157-160
Author(s):  
Hui Wan ◽  
Zhen Yu Hu ◽  
Wu Jun Bao ◽  
Guo Ming Hu

This study deals with the in-plane Young’s moduli of two-dimensional auxetic cellular materials with negative Poisson’s ratios. The in-plane Young’s moduli of these cellular materials are theoretically analyzed, and calculated from the cell member bending with large deflection. Expressions for the in-plane Young’s moduli of the above-mentioned cellular materials are given by incomplete elliptic integrals. It is found that the in-plane Young’s moduli of two-dimensional cellular materials with negative Poisson’s ratios depend both on the geometry of the cell, and on the induced strain of these cellular materials. The in-plane Young’s moduli are no longer constants at large deformation. But at the limit of small strain, they converge to the results predicted by the small deformation model of flexure.


Holzforschung ◽  
2016 ◽  
Vol 70 (11) ◽  
pp. 1093-1101 ◽  
Author(s):  
Jiali Jiang ◽  
Bachtiar Erik Valentine ◽  
Jianxiong Lu ◽  
Peter Niemz

Abstract The time dependency of the orthotropic compliance for Chinese fir wood [Cunninghamia lanceolata (Lamb.) Hook] has been investigated by performing compressive creep experiments in all orthotropic directions. Time evolution of the creep strain in the axial and lateral directions was recorded by means of the digital image correlation (DIC) technique, to determine the diagonal and nondiagonal elements of the viscoelastic compliance matrix. The results reveal the significant influence of time on the mechanical behavior. The orthotropic nature of the viscoelastic compliance is highlighted by the different time dependency of the Young’s moduli and the Poisson’s ratios obtained for the individual directions. Differences among the time-dependent stress-strain relationship determined at the 25, 50, and 75% stress levels indicate that the viscoelastic behavior of wood is also load-dependent. A Poisson’s ratio values, which are increasing with time in νLR, νLT, νRT, νTR, and decreasing in νRL and νTL, demonstrate that the creep strain is influenced by loading directions. The substantially different time dependency of the nondiagonal elements of the compliance matrix further reveals the orthotropic compliance asymmetry and emphasizes the complexity of the viscoelastic character of wood.


Sign in / Sign up

Export Citation Format

Share Document