Solutes in sap obtained from supercritical CO2 dewatering of radiata pine sapwood, and a new role of sap cyclitols in brown stain formation during kiln drying of green wood

Holzforschung ◽  
2019 ◽  
Vol 73 (10) ◽  
pp. 947-956
Author(s):  
Robert A. Franich ◽  
Hank Kroese ◽  
Suzanne Gallagher ◽  
Diane Steward ◽  
Ilena Isak

Abstract Xylem sap obtained from radiata pine sapwood using a supercritical CO2 (scCO2) dewatering process contained a complex mixture of solutes comprising carbohydrates, amino acids, alkanoic and diterpene acids, neutral diterpenoids, β-sitosterol and cyclitols. Sap also contained free phosphoric acid which is known to catalyse the condensation reactions between glutamic and aspartic amino acids and glucose, galactose and fructose to form Maillard products. When heated these Maillard products lead to the formation of melanoidins, which are partly responsible for the formation of kiln brown stain (KBS) when green radiata pine sapwood is kiln dried. The cyclitols, which are major components in sap, have been shown to undergo phosphoric acid-catalysed dehydration reactions under kiln drying conditions to give methoxyl derivatives of hydroquinone, catechol, resorcinol and O-methylphloroglucinol. These reactive phenols are known to exothermally condense with formaldehyde and could also react with other short carbon chain aldehydes generated during kiln drying. The products of these chemical reactions are extended π-orbital aromatic polymers which are darkly-coloured and would be expected to contribute to KBS. This paper describes the chemistry of sap from radiata pine sapwood using scCO2 dewatering and proposes new theory on KBS formation invoking thermal dehydration and retro Diels-Alder chemical reactions of the sap cyclitols.

1988 ◽  
Vol 15 (4) ◽  
pp. 557 ◽  
Author(s):  
MJ Canny ◽  
ME Mccully

Three methods of sampling xylem sap of maize roots were compared: sap bleeding from the stem cut just above the ground; sap bleeding from the cut tops of roots still undisturbed in the ground; and sap aspirated from excavated roots under reduced pressure. The bleeding saps were often unobtainable. When their composition was measured with time from cutting, the concentrations of the major solutes approximately doubled in 2 h. Aspirated sap was chosen as the most reliable sample of root xylem contents. Solute concentrations of the saps showed great variability between individual roots for all solutes, but on average the concentrations found (in �mol g-1 sap) were: total amino acids, 1.8; nitrate, 1.8; sugars (mainly sucrose), 5.4; total organic acids, 18.3. Individual amino acids also varied greatly between roots. Glutamine, aspartic acid and serine were generally most abundant. The principal organic acid found was malic, approximately 8 �mol g-1. From these analyses the ratios of carbon in the fractions (sugars : amino acids : organic acids) = (44 : 6 : 50). 14Carbon pulse fed to a leaf appeared in the root sap within 30 min, rose to a peak at 4-6 h, and declined slowly over a week. During all this time the neutral, cation and anion fractions were sensibly constant in the proportions 86 : 10 : 4. The 14C therefore did not move towards the equilibrium of 12C-compounds in the sap. It is argued that the results do not support a hypothesis of formation of amino carbon from recent assimilate and reduced nitrate in the roots and an export of this to the shoot in the transpiration stream.


1961 ◽  
Vol 35 (11) ◽  
pp. 1027-1029
Author(s):  
Sakae EMOTO ◽  
Makoto ANDO

2005 ◽  
Vol 899 ◽  
Author(s):  
Xipeng Liu ◽  
Chunhua Yao ◽  
William M Risen

AbstractBy employing novel hybrid silica/functional polymer aerogels, control of the course of chemical reactions between reactants confined inside of the aerogels with reactants whose access to the confinement domain is controlled by diffusion has been explored. Thus, monolithic silica/biopolymer hybrid aerogels have been synthesized with coordinated metal ions that can react with amino acids, such as L-cysteine, that are provided externally in a surrounding solution. Metal ions, such as Au(III), that can react in solution with the amino acid to produce one set of products under a given set of stoichiometric or concentration conditions, and a different set of products under a second set of conditions, were selected for incorporation into the aerogel. It was discovered that the course of the reaction can be changed by spatial confinement of the reaction domain in the aerogel. For example, in the case of Au(III) and L-cysteine, the Au(III) ions are confined in nanoscale domains, and when they are reacted with the amino acid, the nature of the reaction products is controlled by diffusion of the L-cysteine into the domains. Exploration of these and related phenomena will be presented.


1965 ◽  
Vol 18 (9) ◽  
pp. 1471 ◽  
Author(s):  
EL Richards

Lactose and casein react to give a complex mixture of sugars and acids from which lactulose, D-galactose, D-tagatose, 5-hydroxymethylfurfural, lactic acid, glycollic acid, phosphoric acid, and the lactones of 2-deoxy-D-glycero-tetronic and 3-deoxy-D-erythro-pentonic acids have been isolated and identified.


1990 ◽  
Vol 68 (9) ◽  
pp. 1942-1947 ◽  
Author(s):  
Philippe Brunet ◽  
Bruno Sarrobert ◽  
Nicole Paris-Pireyre ◽  
Ange-Marie Risterucci

Two species of tomato, Lycopersicon esculentum Mill. var. EGE12P1 and Lycopersicon hirsutum Humb. & Bonpl. ecotype LA 1777, were submitted to two temperature treatments, 20 or 10 °C. After a short study of plant growth, we analysed the chemical composition (cations, anions, and amino acids) of xylem sap by high performance liquid chromatography. A comparison of fresh weight increase at 20 and 10 °C of both plant species showed that L. hirsutum was the least affected by low temperature. The volumes of secreted sap and the quantities of ions transported showed great disturbances in the sensitive species (L. esculentum), especially in the case of potassium. In xylem sap of both species studied, but only at 10 °C, we noticed the appearance of ammonium. The possibility of contamination during analytical processing was eliminated. Moreover, determinations of amino acids levels showed that ammonium did not arise from degradation of amides present in xylem sap. In any event, the proportion of nitrate absorbed and reduced in roots increased at low temperature; it is much more important in L. hirsutum and could constitute a tolerance factor to low temperatures. Key words: ammonium, low temperature, Lycopersicon, xylem sap.


2016 ◽  
Vol 46 (7) ◽  
pp. 1136-1141 ◽  
Author(s):  
Anderson Carlos Marafon ◽  
Flavio Gilberto Herter ◽  
Fernando José Hawerroth ◽  
Adriana Neutzling Bierhals

ABSTRACT: Storage and remobilization are considered key processes for the effective use of nitrogen in temperate fruit trees. As dormancy begins, storage proteins are synthesized, coinciding with a reduction in the levels of free amino acids. Consequently, as dormancy breaks, these storage proteins are degraded, and an increase in the concentrations of amino acids occurs, in order to support new growth. The objective of this study was to evaluate water content of different vegetative tissues (buds, bark, and bole wood), volume of xylem sap, and free amino acid concentrations of xylem sap, during winter dormancy of Hosui Japanese pear trees (VL). Plant material was obtained from the Embrapa Temperate Climate experimental orchard at Pelotas, in the state of Rio Grande do Sul, Brazil. Xylem sap was extracted from the branches with the aid of a vacuum pump, and the free amino acids were determined by gas chromatography, using the EZ kit: Faast GC/FID (Phenomenex). Water content of buds, as well as the volume of sap and concentrations of both aspartic acid and asparagine, substantially increased over time, reaching maximum values in the phase preceding sprouting.


1980 ◽  
Vol 35 (6) ◽  
pp. 727-730
Author(s):  
Oemer Saygin ◽  
Peter Decker

Abstract Nonenzymatic catalysis by bivalent ions of Be, Mg, Ca, Zn, Mn, Ni and Co and bioorganic phosphates of the formation of hydroxamic acids from acetate or amino acids has been studied systematically. Increased yields of hydroxamate were observed at particular combinations of reactants. The most prominent increase (ca. 15-fold) was found with acetate and Ni++, and with a combination of ATP and Be++. Among others especially ribose-5-phosphate and glucose-5-phosphate enhanced yields in the presence of most metal ions. Since no release of inorganic phosphate was observed, this effect cannot be interpreted as an evidence for intermediate transhosphorylation reactions; it may also result from simple catalytic effects of metal sugar complexes.


2017 ◽  
Vol 68 (5) ◽  
pp. 415 ◽  
Author(s):  
K. Khodamoradi ◽  
A. H. Khoshgoftarmanesh ◽  
S. A. M. Mirmohammady Maibody

Organic acids exuded from plant roots significantly modify uptake and long-distance translocation of metals. Little is known about the effect of amino acids on metal ion uptake by plant roots. The present study investigated the effects of exogenous amino acids (histidine and glycine) in a nutrient solution on root uptake and xylem sap transport of cadmium (Cd) in triticale (× Triticosecale cv. Elinor) and bread wheat (Triticum aestivum L. cv. Back Cross Rushan). Plant seedlings were grown in a Cd-free modified Hoagland nutrient solution to which 1 µm Cd was added with either 50 µm histidine or 50 µm glycine or without amino acids at 4 weeks after germination. A control treatment consisted of a nutrient solution free of Cd and amino acids. In bread wheat, addition of histidine to the Cd-containing nutrient solution resulted in a higher operationally defined symplastic Cd fraction but a lower apoplastic one in the roots. In triticale, addition of either amino acid decreased the symplastic Cd fraction but increased the apoplastic one. Addition of histidine to the nutrient solution increased Cd concentration in wheat xylem sap but had no significant effect on Cd concentration in triticale xylem sap. Compared with the Cd-only treatment, the glycine-containing treatment led to significantly reduced Cd concentrations in xylem sap of both plant species. Wheat plants supplied with histidine and Cd accumulated greater amounts of Cd in their shoots than those supplied with Cd alone. Glycine had no significant effects on the Cd content of wheat shoots but decreased it in triticale shoots. Results indicate that the effects of amino acids on plant root uptake and xylem sap translocation of Cd depend on the type of amino acid supplemented. This finding is of great importance for selecting and/or breeding cultivars with Cd-toxicity tolerance.


1967 ◽  
Vol 105 (1) ◽  
pp. 299-310 ◽  
Author(s):  
H. J. Somerville ◽  
J. L. Peel

Peptostreptococcus elsdenii, a strict anaerobe from the rumen, was grown on a medium containing yeast extract and [1−14C]- or [2−14C]-lactate. Radioisotope from lactate was found in all cell fractions, but mainly in the protein. The label in the protein fraction was largely confined to a few amino acids: alanine, serine, aspartic acid, glutamic acid and diaminopimelic acid. The alanine, serine, aspartic acid and glutamic acid were separated, purified and degraded to establish the distribution of 14C from lactate within the amino acid molecules. The labelling patterns in alanine and serine suggested their formation from lactate without cleavage of the carbon chain. The pattern in aspartic acid suggested formation by condensation of a C3 unit derived directly from lactate with a C1 unit, probably carbon dioxide. The distribution in glutamic acid was consistent with two possible pathways of formation: (a) by the reactions of the tricarboxylic acid cycle leading from oxaloacetate to 2-oxoglutarate, followed by transamination; (b) by a pathway involving the reaction sequence 2 acetyl-CoA→crotonyl-CoA→glutaconate→glutamate.


Sign in / Sign up

Export Citation Format

Share Document