Tangential Youngs Modulus of Coniferous Early Wood Investigated Using Cell Models

Holzforschung ◽  
1999 ◽  
Vol 53 (2) ◽  
pp. 209-214 ◽  
Author(s):  
Ugai Watanabe ◽  
Misato Norimoto ◽  
Toshimasa Ohgama ◽  
Minoru Fujita

Summary The relationship between the tangential Young's modulus and the transverse cell shape in coniferous early wood was investigated by using cell models constructed by power spectrum analysis. The calculated Young's moduli of the cell models explained qualitatively the change of the experimental Young's moduli with density as well as the difference in the experimental values among species. The calculated Young's moduli differed significantly among species depending on the cell model shapes when compared at the same density. With increasing element angle in the model, the Young's modulus greatly increased without a significant change in the density, especially at the larger ratios of the axial length of the tangential cell wall to that of the radial cell wall.

Holzforschung ◽  
2002 ◽  
Vol 56 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Ugai Watanabe ◽  
Minoru Fujita ◽  
Misato Norimoto

Summary The relationship between transverse Young's moduli and cell shapes in coniferous early wood was investigated using cell models constructed by two dimensional power spectrum analysis. The calculated values of tangential Young's modulus qualitatively explained the relationship between experimental values and density as well as the difference in experimental values among species. The calculated values of radial Young's modulus for the species having hexagonal cells agreed well with the experimental values, whereas, for the species having square cells, the calculated values were much larger than the experimental values. This result was ascribed to the fact that the bending moment on the radial cell wall of square cell models was calculated to be small. It is suggested that the asymmetrical shape of real wood cells or the behavior of nodes during ell deformation is an important factor in the mechanism of linear elastic deformation of wood cells.


Holzforschung ◽  
2013 ◽  
Vol 67 (8) ◽  
pp. 941-948 ◽  
Author(s):  
Hiroshi Yoshihara

Abstract The flexural Young’s modulus of western hemlock, medium-density fiberboard, and 5-plywood (made of lauan) has been determined by conducting three- and four-point bending tests with various span lengths and by flexural vibration test. The Young’s modulus was significantly influenced by the deflection measurement method. In particular, the Young’s modulus was not reliable based on the difference between the deflections at two specific points in the specimen, although this test is standardized according to ISO 3349-1975 and JIS Z2101-2009.


2010 ◽  
Vol 139-141 ◽  
pp. 594-599
Author(s):  
Yan Qiu Zhang ◽  
Shu Yong Jiang ◽  
Yu Feng Zheng

The spring steel strip 50CrVA which is cold rolled was applied to manufacture the diaphragm of the automotive horn by means of sheet metal forming. The combination of the experiments with back-propagation artificial neural network (BPANN) is used to solve the springback problem of the diaphragm. Experiments have shown that a 4-8-1 BPANN is able to predict the springback of the diaphragm successfully, and the network is able to model the relationship between the springback of the diaphragm and the process parameters rationally. BPANN simulation results and experimental ones have shown that the springback of the diaphragm is particularly influenced by such parameters as blank thickness, Young’s modulus, punch radius and yield ratio. Furthermore, the springback of the diaphragm decreases with the increase of blank thickness and Young’s modulus, but increases with the increase of punch radius and yield ratio.


2011 ◽  
Vol 415-417 ◽  
pp. 455-459
Author(s):  
Xiao Ming Wang ◽  
Fei Wang ◽  
Xue Zeng Zhao ◽  
Da Lei Jing

The modified static bending model of microcantilever with monolayer molecules has been established based on energy method, in which the change in neutral layer position caused by adsorption-induced stress has been considered. On this basis, we have analyzed the relationship between the bending curvature radius of a microcantilever with its thickness, Young’s modulus and molecule-molecule distance of adsorbed molecules when it is adsorbed with monolayer water molecules. Additionally, we have investigated the effect of change in neutral layer position on the static behavior of microcantilever sensors and have found that: 1) the bending curvature radius of microcantilever is affected by its Young’s modulus, thickness and distance of adsorbed molecules respectively; 2)the predicted error of bending curvature radius caused by the change in neutral layer position slightly increases with decreasing Young’s modulus and thickness, whereas the effect of distance between adsorbed molecules on the error is significant.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
S. V. San’kova ◽  
N. M. Shkatulyak ◽  
V. V. Usov ◽  
N. A. Volchok

The measuring of the constants of single-crystals requires the availability of crystals of relatively big size. In this paper the elastic constants of the single crystals of magnesium alloy with zinc, zirconium, and rare earth metals (REM) were determined by means of the experimental anisotropy of Young’s modulus and integral characteristics of texture (ICT), which were found from pole figures. Using these constants the anisotropy of Young’s modulus of alloy sheet ZE10 was calculated. Deviation of calculated values from experimental values did not exceed 2%.


2020 ◽  
Vol 12 ◽  
pp. 42-52
Author(s):  
S. A. Muslov ◽  
◽  
A. I. Lotkov ◽  
S. D. Arutyunov ◽  
T. M. Albakova ◽  
...  

A review of studies of the mechanical properties of human and animal heart tissues has been performed. Based on literature data, a form of approximating function is found for the dependence of the Young’s modulus of the ventricles of the human heart on the magnitude of the deformation. The average values of the Young’s modulus and other elastic constants were calculated and compared with the known experimental values. The coefficients C1 and C2 of the two-parameter hyperelastic myocardial Mooney-Rivlin model are calculated.


2019 ◽  
Vol 946 ◽  
pp. 309-314 ◽  
Author(s):  
Anatoly G. Illarionov ◽  
S.V. Grib ◽  
A.V. Huppeev

The relationship between the phase composition and the Young’s modulus in quenched PT-7M, Ti-6Al-7Nb, BT16 titanium alloys has been studied using the structural analysis, thermodynamic calculations in the Thermo-Calc software and micro-indentation. It is found that the nature of the change in the Young’s modulus in the investigated titanium alloys after quenching from the two-phase α+β-region depends on the chemical composition of the alloy, which determines the nature of the observed metastable phases (α', α", ω, β). The correlation between the extreme change in the Young’s modulus from the quenching temperature and the so-called interatomic bonding force (Fb) calculated from the electronic structure parameters of the α, α', β phases was shown for the Ti-6Al-7Nb alloy. The relationship between the limits of the Young’s modulus of the investigated alloys during quenching with the level of their alloying with α-and β-stabilizers is shown.


2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Matthew L. Fitzgerald ◽  
Sara Tsai ◽  
Leon M. Bellan ◽  
Rebecca Sappington ◽  
Yaqiong Xu ◽  
...  

2020 ◽  
Vol 21 (4) ◽  
pp. 404
Author(s):  
Ankita Sinha ◽  
Atul Bhargav

Texture is an important attribute in the quality assessment of processed food products. Recently, Young's modulus is identified as one of the most important indicators of food texture. However, there is much ambiguity in the literature about quantification and standards for texture analysis. In this paper, the sensitivity of Young's modulus (and thus texture) towards the applied deformation rate, sample shape and size, moisture content is studied experimentally for potato and sweet potato samples. We found that Young's moduli vary by as much as 54% depending on the rate of applied strain, indicating the need for test standards. The strain rate dependent behaviour exhibits the viscoelastic nature of the potato samples, which was further validated by stress relaxation and cyclic tests. Based on our experimental iterations and associated finding of the work, we propose the need for a standardised procedure for measuring Young's modulus and texture analysis. We expect this work to serve as a crucial step toward standardised texture measurement during thermal processing of food products.


Sign in / Sign up

Export Citation Format

Share Document