Evaluation of Pettys Nonlinear Model in Wood Permeability Measurement

Holzforschung ◽  
2001 ◽  
Vol 55 (1) ◽  
pp. 82-86
Author(s):  
J. Lu ◽  
F. Bao ◽  
Y. Zhao

Summary To calculate the effective radii of two conductive elements in series in wood specimens by using the gas permeability measurement, the four parameters from the curvilinear relationship of superficial specific permeability against reciprocal mean pressure as illustrated in Petty's model must be evaluated. This paper describes a detailed procedure for obtaining such parameters by using the least-squares fit calculated from a statistical analysis system (SAS) program. Three different iterative optimization algorithms and starting points were used separately to fit the Petty's nonlinear model based on the same experimental data from one specimen of birch. The estimate of the parameters: A = 35.38 darcy, B = 80.51 darcy, l = 0.19 darcy atm, m = 6.34 darcy atm was recommended for the fitted model. Compared to the results on the estimate of parameters obtained in the previous papers, this estimate for the parameters was a global minimum, thus it was a refinement and more accurate. Since the Gauss-Newton method resulted in almost the same convergence results for all the three sets of starting values with the least iterations in the evaluation, it was the preferred optimization algorithm both for simplicity and accuracy in solving the Petty's model. Because the same solutions for all three iterative optimization algorithms were obtained by using two different sets of starting points produced from the grid search, a grid search seemed to be very helpful for finding reasonable starting values for various iterative optimization techniques.

Author(s):  
Alireza Fathi ◽  
Abdollah Shadaram ◽  
Mohammad Alizadeh

This paper introduces a framework to perform a multi-objective multipoint aerodynamic optimization for an axial compressor blade. This framework considers through-flow design requirements and mechanical and manufacturing constraints. Typically, components of a blade design system include geometry generation tools, optimization algorithms, flow solvers, and objective functions. In particular, optimization algorithms and objective functions are tuned to reduce blade design calculation cost and to match designed blade performance to the through flow design criteria and mechanical and manufacturing constrains. In the present study, geometry parameters of blade are classified to three categories. For each category, a distinct optimization loop is applied. In outer loop, Gradient-based optimization techniques are used to optimize parameters of the second category and a two-dimensional compressible viscous flow code is used to simulate the cascade fluid flow. Surface curvature optimization is carried out in inner loop, and its objective function is defined by integrating the normalized curvature and curvature slope. The genetic algorithm is used to optimize the parameters in the interior loop. To highlight the capabilities of the design method and to develop design know-how, an initial profile is optimized with three different design philosophies. The highest performance improvement in the first case is 15% reduction in loss at design incidence angle. In the second case, 16.5% increase in allowable incidence angle range, improves blade’s performance at off design conditions.


2018 ◽  
Vol 246 ◽  
pp. 01003
Author(s):  
Xinyuan Liu ◽  
Yonghui Zhu ◽  
Lingyun Li ◽  
Lu Chen

Apart from traditional optimization techniques, e.g. progressive optimality algorithm (POA), modern intelligence algorithms, like genetic algorithms, differential evolution have been widely used to solve optimization problems. This paper deals with comparative analysis of POA, GA and DE and their applications in a reservoir operation problem. The results show that both GA and DES are feasible to reservoir operation optimization, but they display different features. GA and DE have many parameters and are difficult in determination of these parameter values. For simple problems with mall number of decision variables, GA and DE are better than POA when adopting appropriate parameter values and constraint handling methods. But for complex problem with large number of variables, POA combined with simplex method are much superior to GA and DE in time-assuming and quality of optimal solutions. This study helps to select proper optimization algorithms and parameter values in reservoir operation.


Author(s):  
Hadi Belhaj ◽  
Bechir Mtawaa ◽  
Mohammed Haroun ◽  
Terry Lay

Information ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 108 ◽  
Author(s):  
Abdul Shah ◽  
Haidawati Nasir ◽  
Muhammad Fayaz ◽  
Adidah Lajis ◽  
Asadullah Shah

In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique is to maintain a balance between user comfort and energy requirements, such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gaps in the literature are due to advancements in technology, the drawbacks of optimization algorithms, and the introduction of new optimization algorithms. Further, many newly proposed optimization algorithms have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. Detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes.


Sign in / Sign up

Export Citation Format

Share Document