Regulating the development of pulmonary Group 2 innate lymphoid cells

2019 ◽  
Vol 400 (11) ◽  
pp. 1497-1507 ◽  
Author(s):  
Sofia Helfrich ◽  
Claudia U. Duerr

Abstract Group 2 innate lymphoid cells (ILC2s) are members of the family of innate lymphoid cells and are innately committed to type 2 immune responses. In the lungs, ILC2s are the predominant population of innate lymphoid cells (ILCs) and their development is orchestrated by several different transcription factors ensuring lineage commitment by intrinsic regulation. ILC2s are present in the lungs from the foetal period onwards and are thus exposed to extrinsic regulation due to the airways’ continuous morphological changes upon birth. In this review, we will briefly summarise the dependence of ILC2s on transcription factors and discuss recently described characteristics and function of early life ILC2s in the lungs.

2019 ◽  
Vol 20 (6) ◽  
pp. 1377 ◽  
Author(s):  
Takashi Ebihara ◽  
Ichiro Taniuchi

Group 2 innate lymphoid cells (ILC2s) are tissue-resident cells and are a major source of innate TH2 cytokine secretion upon allergen exposure or parasitic-worm infection. Accumulating studies have revealed that transcription factors, including GATA-3, Bcl11b, Gfi1, RORα, and Ets-1, play a role in ILC2 differentiation. Recent reports have further revealed that the characteristics and functions of ILC2 are influenced by the physiological state of the tissues. Specifically, the type of inflammation strongly affects the ILC2 phenotype in tissues. Inhibitory ILC2s, memory-like ILC2s, and ex-ILC2s with ILC1 features acquire their characteristic properties following exposure to their specific inflammatory environment. We have recently reported a new ILC2 population, designated as exhausted-like ILC2s, which emerges after a severe allergic inflammation. Exhausted-like ILC2s are featured with low reactivity and high expression of inhibitory receptors. Therefore, for a more comprehensive understanding of ILC2 function and differentiation, we review the recent knowledge of transcriptional regulation of ILC2 differentiation and discuss the roles of the Runx transcription factor in controlling the emergence of exhausted-like ILC2s. The concept of exhausted-like ILC2s sheds a light on a new aspect of ILC2 biology in allergic diseases.


2015 ◽  
Vol 17 (1) ◽  
pp. 76-86 ◽  
Author(s):  
Kazuyo Moro ◽  
Hiroki Kabata ◽  
Masanobu Tanabe ◽  
Satoshi Koga ◽  
Natsuki Takeno ◽  
...  

2016 ◽  
Vol 9 (6) ◽  
pp. 1384-1394 ◽  
Author(s):  
T Mchedlidze ◽  
M Kindermann ◽  
A T Neves ◽  
D Voehringer ◽  
M F Neurath ◽  
...  

2020 ◽  
Author(s):  
J-H Schroeder ◽  
N Garrido-Mesa ◽  
T Zabinski ◽  
AL Gallagher ◽  
L Campbell ◽  
...  

ABSTRACTInnate lymphoid cells (ILC) play a critical role in regulating immune responses at mucosal surfaces. Various subsets exist resembling T cell lineages defined by the expression of specific transcription factors. Thus, T-bet is expressed in ILC1 and Th1 cells. In order to further understand the functional roles of T-bet in ILC, we generated a fate-mapping mouse model that permanently marks cells and their progeny that are expressing, or have ever expressed T-bet. Here we have identified and characterised a novel ILC with characteristics of ILC1 and ILC2 that are “fate-mapped” for T-bet expression and arise early in neonatal life prior to establishment of a mature microbiome. These ILC1-ILC2 cells are critically dependent on T-bet and are able to express type 1 and type 2 cytokines at steady state, but not in the context of inflammation. These findings refine our understanding of ILC lineage regulation and stability and have important implications for the understanding of ILC biology at mucosal surfaces.SUMMARYInnate lymphoid cells (ILC) play a critical role in regulating immune responses at mucosal surfaces. Three distinct ILC groups have been described according to expression of subset defining transcription factors and other markers. In this study we characterize a novel ILC subset with characteristics of group 1 and group 2 ILC in vivo.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yotaro Nishikawa ◽  
Tomohiro Fukaya ◽  
Takehito Fukui ◽  
Tomofumi Uto ◽  
Hideaki Takagi ◽  
...  

Atopic dermatitis (AD) is a common pruritic inflammatory skin disease characterized by impaired epidermal barrier function and dysregulation of Thelper-2 (TH2)-biased immune responses. While the lineage of conventional dendritic cells (cDCs) are implicated to play decisive roles in T-cell immune responses, their requirement for the development of AD remains elusive. Here, we describe the impact of the constitutive loss of cDCs on the progression of AD-like inflammation by using binary transgenic (Tg) mice that constitutively lacked CD11chi cDCs. Unexpectedly, the congenital deficiency of cDCs not only exacerbates the pathogenesis of AD-like inflammation but also elicits immune abnormalities with the increased composition and function of granulocytes and group 2 innate lymphoid cells (ILC2) as well as B cells possibly mediated through the breakdown of the Fms-related tyrosine kinase 3 ligand (Flt3L)-mediated homeostatic feedback loop. Furthermore, the constitutive loss of cDCs accelerates skin colonization of Staphylococcus aureus (S. aureus), that associated with disease flare. Thus, cDCs maintains immune homeostasis to prevent the occurrence of immune abnormalities to maintain the functional skin barrier for mitigating AD flare.


2020 ◽  
Vol 32 (6) ◽  
pp. 407-419 ◽  
Author(s):  
Yurina Miyajima ◽  
Kafi N Ealey ◽  
Yasutaka Motomura ◽  
Miho Mochizuki ◽  
Natsuki Takeno ◽  
...  

Abstract Group 2 innate lymphoid cells (ILC2s) are type 2 cytokine-producing cells that have important roles in helminth infection and allergic inflammation. ILC2s are tissue-resident cells, and their phenotypes and roles are regulated by tissue-specific environmental factors. While the role of ILC2s in the lung, intestine and bone marrow has been elucidated in many studies, their role in adipose tissues is still unclear. Here, we report on the role of ILC2-derived bone morphogenetic protein 7 (BMP7) in adipocyte differentiation and lipid accumulation. Co-culture of fat-derived ILC2s with pluripotent mesenchymal C3H10T1/2 cells and committed white preadipocyte 3T3-L1 cells resulted in their differentiation to adipocytes and induced lipid accumulation. Co-culture experiments using BMP7-deficient ILC2s revealed that BMP7, produced by ILC2s, induces differentiation into brown adipocytes. Our results demonstrate that BMP7, produced by ILC2s, affects adipocyte differentiation, particularly in brown adipocytes.


2020 ◽  
Vol 21 (4) ◽  
pp. 1350 ◽  
Author(s):  
Melina Messing ◽  
Sia Cecilia Jan-Abu ◽  
Kelly McNagny

Innate lymphoid cells (ILCs) are recently discovered innate counterparts to the well-established T helper cell subsets and are most abundant at barrier surfaces, where they participate in tissue homeostasis and inflammatory responses against invading pathogens. Group 2 innate lymphoid cells (ILC2s) share cytokine and transcription factor expression profiles with type-2 helper T cells and are primarily associated with immune responses against allergens and helminth infections. Emerging data, however, suggests that ILC2s are also key regulators in other inflammatory settings; both in a beneficial context, such as the establishment of neonatal immunity, tissue repair, and homeostasis, and in the context of pathological tissue damage and disease, such as fibrosis development. This review focuses on the interactions of ILC2s with stromal cells, eosinophils, macrophages, and T regulatory cells that are common to the different settings in which type-2 immunity has been explored. We further discuss how an understanding of these interactions can reveal new avenues of therapeutic tissue regeneration, where the role of ILC2s is yet to be fully established.


2020 ◽  
Vol 40 (4) ◽  
pp. 853-864 ◽  
Author(s):  
Tian X. Zhao ◽  
Stephen A. Newland ◽  
Ziad Mallat

Regulatory T cells and type-2 innate lymphoid cells represent 2 subsets of immune cells, which have been shown in preclinical models to be important in atherosclerosis and myocardial repair. Regulatory T cells play a crucial role in immune homeostasis and tolerance via their interactions with effector T cells, dendritic cells, and monocytes/macrophages. They also utilize and secrete inhibitory cytokines, including interleukin 10 and transforming growth factor β, to regulate or suppress pathogenic immune responses. Type-2 innate lymphoid cells have an important role in type-2 immune responses and tissue repair through secreting interleukins 5 and 13, as well as a variety of biological mediators and growth factors. Intriguingly, interleukin-2 has emerged as a common cytokine, which can be harnessed to upregulate both cell types, and also has important translational consequences as clinical trials are ongoing for its use in cardiovascular disease. Here, we briefly review the biology of these regulatory immune cell types, discuss the preclinical and clinical evidence for their functions in cardiovascular disease, examine the prospects for clinical translation and current ongoing trials, and finally, postulate how overlap in the mechanisms of upregulation may be leveraged in future treatments for patients.


Sign in / Sign up

Export Citation Format

Share Document