Quantitative Analysis of Dynamic Softening Behaviors Induced by Dynamic Recrystallization for Ti-10V-2Fe-2Al Alloy

Author(s):  
Guozheng Quan ◽  
Shiao Pu ◽  
Hairong Wen ◽  
Zhenyu Zou ◽  
Jie Zhou

AbstractIn order to investigate the effect of dynamic recrystallization (DRX) behavior on dynamic softening behavior of wrought Ti-10V-2Fe-3Al titanium alloy, a series of laboratory scale isothermal hot compression tests with a height reduction of 60% were performed in a temperature range of 948 K~1023 K in the (

Materials ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 232
Author(s):  
Zhiyong Zhao ◽  
Jun Gao ◽  
Yaoqi Wang ◽  
Yanling Zhang ◽  
Hongliang Hou

To investigate the effect of equal channel angular pressing (ECAP) on the deformation of Ti-6Al-4V alloy at a higher temperature, hot compression tests were conducted on alloys having two different initial microstructures (the original alloy (Pre-ECAP) and ECAP-deformed alloy (Post-ECAP)). Post-ECAP, the alloy showed a higher degree of dynamic softening during the hot deformation process due to its finer grain size and higher distortion energy. The flow stress of Post-ECAP alloy was higher than the Pre-ECAP alloy at 500 °C when ε˙= 0.003 s−1. However, the stress of the Post-ECAP alloy decreased rapidly with increasing temperature and strain rate, until the stress value was much lower than that of Pre-ECAP at 700 °C when ε˙= 0.03 s−1. The value of the dynamic softening coefficient revealed that the dynamic softening behavior of Post-ECAP was more pronounced than that of Pre-ECAP in the hot compression deformation process. The main dynamic softening mechanism of Pre-ECAP is dynamic recovery, while the dynamic recrystallization process plays a more important role in the deformation process of Post-ECAP alloy. The microstructures observation results showed that dynamic recrystallization was more likely to occur to Post-ECAP alloys under the same deformation condition. Almost fully dynamic recrystallization had occurred in the deformation process of Post-ECAP at 700 °C and a strain rate of ε˙= 0.01 s−1. The grains of Post-ECAP alloys were further refined. The Post-ECAP alloy exhibits better plastic deformation at temperatures higher than 600 °C due to its significant dynamic recrystallization.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2282 ◽  
Author(s):  
Zhimin Zhang ◽  
Zhaoming Yan ◽  
Yue Du ◽  
Guanshi Zhang ◽  
Jiaxuan Zhu ◽  
...  

Mg-Gd-Y-Zn-Zr Mg alloys show excellent performance in high-end manufacturing due to its strength, hardness and corrosion resistance. However, the hot deformation and dynamic recrystallization (DRX) behaviors of Mg-13.5Gd-3.2Y-2.3Zn-0.5Zr were not studied. For this article, hot compression behavior of homogenized high rare-earth (RE) content Mg-13.5Gd-3.2Y-2.3Zn-0.5Zr (wt%) alloy was investigated by using the Gleeble-3500D thermo-simulation test machine under the temperature of 350–500 °C and the strain rate of 0.001–1 s−1. It was found that the high flow stress corresponded to the low temperature and high strain rate, which showed DRX steady state curve during the hot compression. The hot deformation average activation was 263.17 kJ/mol, which was obtained by the analysis of the hyperbolic constitutive equation and the Zener-Hollomon parameter. From observation of the microstructure, it was found that kink deformation of long period stacking ordered (LPSO) phase was one of the important coordination mechanisms of hot deformation at low temperature. The processing map with the strain of 0.5 was established under the basis of dynamic material model (DMM); it described two high power dissipation domains: one appearing in the temperature range of 370–440 °C and the strain rate range of 0.001–0.006 s−1, the other appearing in the temperature range of 465–500 °C and strain rate range of 0.001–0.05 s−1, in which dynamic recrystallization (DRX) mainly ocurred. The highest degree of DRX was 18% from the observation of the metallographic.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 789
Author(s):  
Qiang Fu ◽  
Wuhua Yuan ◽  
Wei Xiang

In this study, isothermal compression tests of TB18 titanium alloy were conducted using a Gleeble 3800 thermomechanical simulator for temperatures ranging from 650 to 880 °C and strain rates ranging from 0.001 to 10 s−1, with a constant height reduction of 60%, to investigate the dynamic softening mechanisms and hot workability of TB18 alloy. The results showed that the flow stress significantly decreased with an increasing deformation temperature and decreasing strain rate, which was affected by the competition between work hardening and dynamic softening. The hyperbolic sine Arrhenius-type constitutive equation was established, and the deformation activation energy was calculated to be 303.91 kJ·mol−1 in the (α + β) phase zone and 212.813 kJ·mol−1 in the β phase zone. The processing map constructed at a true strain of 0.9 exhibited stability and instability regions under the tested deformation conditions. The microstructure characteristics demonstrated that in the stability region, the dominant restoration and flow-softening mechanisms were the dynamic recovery of β phase and dynamic globularization of α grains below transus temperature, as well as the dynamic recovery and continuous dynamic recrystallization of β grains above transus temperature. In the instability region, the dynamic softening mechanism was flow localization in the form of a shear band and a deformation band caused by adiabatic heating.


2004 ◽  
Vol 449-452 ◽  
pp. 577-580
Author(s):  
Young Sang Na ◽  
Young Mok Rhyim ◽  
J.Y. Lee ◽  
Jae Ho Lee

In order to quantitatively analyze the critical strain for the initiation of dynamic recrystallization in Ni-Fe-based Alloy 718, a series of uniaxial compression tests was conducted in the temperature range 927°C - 1066°C and the strain rate range 5 x 10-4s-1- 5 s-1with varying initial grain size. The critical strains were graphically determined based on one parameter approach and microscopically confirmed. The effect of γ'' (matrix-hardening phase) and δ (grain boundary phase)on the critical strain was simply discussed. The constitutive model for the critical strain of Alloy 718 was constructed using the experimental data obtained from the higher strain rate and the temperature range between 940°C and 1040°C.


Author(s):  
Amir Hosein Sheikhali ◽  
Maryam Morakkabati

Abstract In this study, hot deformation behavior of SP-700 titanium alloy was investigated by hot compression tests in the temperature range of 700-9508C and at strain rates of 0.001, 0.1, and 1 s-1. Final mechanical properties of the alloy (hot compressed at different strain rates and temperatures) were investigated using a shear punch testing method at room temperature. The flow curves of the alloy indicated that the yield point phenomenon occurs in the temperature range of 800- 9508C and strain rates of 0.1 and 1 s-1. The microstructural analysis showed that dynamic globularization of the lamellar α phase starts at 7008C and completes at 8008C. The alpha phase was completely eliminated from b matrix due to deformation- induced transformation at 8508C. The microstructure of specimens compressed at 8508C and strain rates of 0.001 and 0.1 s-1showed the serration of beta grain boundaries, whereas partial dynamic recrystallization caused a necklace structure by increasing strain rate up to 1 s-1. The specimen deformed at 7008C and strain rate of 1 s-1was located in the instability region and localized shear bands formed due to the low thermal conductivity of the alloy. The processing map of the alloy exhibited a peak efficiency domain of 54% in the temperature range of 780-8108C and strain rates of 0.001- 0.008 s-1. The hot deformation activation energy of the alloy in the α/β region (305.5 kJ mol-1) was higher than that in the single-phase β region (165.2 kJ mol-1) due to the dynamic globularization of the lamellar a phase.


2015 ◽  
Vol 71 ◽  
pp. 68-77 ◽  
Author(s):  
Y.Q. Ning ◽  
B.C. Xie ◽  
H.Q. Liang ◽  
H. Li ◽  
X.M. Yang ◽  
...  

2013 ◽  
Vol 712-715 ◽  
pp. 58-64
Author(s):  
Jing Qi Zhang ◽  
Hong Shuang Di ◽  
Xiao Yu Wang

In the present study, deformation heating generated by plastic deformation and its effect on the processing maps of Ti-15-3 titanium alloy were investigated. For this purpose, hot compression tests were performed on a Gleeble-3800 thermo-mechanical simulator in the temperature range of 850-1150 °C and strain rate range of 0.001-10 s1. The temperature rise due to deformation heating was calculated and the as-measured flow curves were corrected for deformation heating. Using the as-measured and corrected flow stress data, the processing maps for Ti-15-3 titanium alloy at a strain of 0.5 were developed on the basis Murty‘s and Babu’s instability criteria. The results show that both the instability maps based the two instability criteria are essentially similar and are characterized by an unstable region occurring at strain rates higher than 0.1 s1for almost the entire temperature range tested. The unstable regions are overestimated from the as-measured data due to the effect of deformation heating, indicating a better workability after correcting the effect of deformation heating. This is further conformed by the analysis based on strain rate sensitivity.


2014 ◽  
Vol 511-512 ◽  
pp. 63-69
Author(s):  
Rui Jia ◽  
Fu Zhong Wang

Deformation behavior of steel 33Μn2v for oil well tube was studied by hot compression tests conducted at various temperatures and strain rates.The Kumar model was developed to predict the hot deformation behavior of steel 33Mn2V for oil well tube.In this regard,the hot compression tests were carried out at the temperatures from 750°C to 1200°C and at the strain rates of 0.02s1 to 0.16 s1.The experimental data were then used to determine the constants of developed constitutive equations. The Kumar model can be represented by ZenerHollomon parameter in a hyperbolic sinusoidal equation form.The apparent activation energy of deformation is calculated to be 342.1481kJ/Mol.Dynamic recrystallization of steel 33Mn2V occur and the completion of the critical deformation is small,termination error and the initial deformation is smaller.Therefore,its easy for the steel 33Mn2V to the occurrence and completion of dynamic recrystallization.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2147
Author(s):  
Limin Zhu ◽  
Quanan Li ◽  
Qing Zhang ◽  
Xiaoya Chen

Dynamic precipitation of Mg–8.08Gd–2.41Sm–0.30Zr (wt %) alloy during hot compression was studied in the present work. The effects of temperature and strain rate on dynamic precipitation, and the effects of dynamic precipitation on dynamic recrystallization (DRX) and microhardness, were systematically analyzed. For this purpose, hot compression tests were conducted at the strain rates of 0.002~1 s−1 and temperatures of 350~500 °C, with the compaction strain of 70% (εmax = 0.7). The obtained results revealed that dynamic precipitation occurred during hot compression at 350~400 °C, but did not occur for T ≥ 450 °C. The precipitates were demonstrated to be β-Mg5Gd with a size of 200~400 nm, and they were distributed in the DRXed region. Dynamic precipitation occurred at strain rates in the 0.002~0.01 s−1 range, but did not occur when the strain rates were in the 0.1~1 s−1 range for the hot compression temperature of 350 °C. The relationships between the hot compression temperature (T) and DRXed grain size (lnd), microhardness (Hv), and DRXed grain size (d−1/2) of Mg–8.08Gd–2.41Sm–0.30Zr alloy were obtained.


Sign in / Sign up

Export Citation Format

Share Document