Photoluminescence Properties of Eu3+-activated Silicate Phosphors

2017 ◽  
Vol 36 (6) ◽  
pp. 635-640
Author(s):  
Esra Öztürk

AbstractThe silicate-type and Eu3+-activated Sr3SiO5 and Mg3SiO5 were prepared through the high temperature solid state reaction method under an open atmosphere. DTA/TG analysis was conducted to obtain information about the thermal behaviors of the mixed reactants. Using the DTA/TG results, the sintering process was achieved and the phase properties were characterized by X-ray diffraction (XRD). The effects of the same activator (Eu3+) and co-dopant (Dy3+) on the photoluminescence (PL) properties of the host lattices were investigated by using a photoluminescence spectrometer.

2020 ◽  
Vol 18 (11) ◽  
pp. 14-18
Author(s):  
Abbas K. Saadon ◽  
Kareem A. Jasim ◽  
Auday H. Shaban

The high temperature superconductor’s compounds are one of the hot spot field of science, due to their applications in industries. Hg0.8Sb0.2Ba2Ca2Cu3O8+δ and Hg0.8Sb0.2Ba2Ca1Cu2O6+δ, were manufactured using a doable-step of solid state reaction method. The samples were sintered at 800 ° C. The transition temperatures Tc are found from electrically resistively by using four probe techniques. The resistivity become zero when the transition temperature Tc(offset) have 131 and 119 K, and the onset temperature Tc(onset) have 139 K for Hg0.8Sb0.2Ba2Ca2Cu3O8+δ and 132 K for Hg0.8Sb0.2Ba2Ca1Cu2O6+δ. Analysis of X-ray diffraction showed a tetragonal structure with lattice parameters changes for all samples.


2019 ◽  
Vol 12 (04) ◽  
pp. 1950057 ◽  
Author(s):  
Chao-Chao Guo ◽  
Qun Zeng ◽  
Chun-Feng Yao ◽  
Yan-Zhao Feng ◽  
Xi Chen ◽  
...  

Red phosphors with compositions of Li[Formula: see text]Nb[Formula: see text]Ti[Formula: see text]O3:3[Formula: see text]wt.% Eu[Formula: see text] [Formula: see text] were synthesized by solid-state reaction method. The samples were investigated by using X-ray diffraction (XRD) and photoluminescence spectroscopy, respectively. XRD results showed that all samples were main phase of Li2TiO3. Emission spectra of Li[Formula: see text]Nb[Formula: see text]Ti[Formula: see text]O3:3[Formula: see text]wt.% Eu[Formula: see text] powders showed strong red emission at 612[Formula: see text]nm (5D0–7F[Formula: see text] with 396[Formula: see text]nm excitation. In addition, the excitation and emission intensity increased up to [Formula: see text], and then decreased with further increasing of the x values. And the chromaticity coordinate (CIE) of the component with [Formula: see text] was superior to other components.


2009 ◽  
Vol 42 (2) ◽  
pp. 153-160 ◽  
Author(s):  
Zhèn Yáng ◽  
Ashley S. Harvey ◽  
Anna Infortuna ◽  
Ludwig J. Gauckler

Selected compositions of the Ba–Sr–Co–Fe–O system were synthesized from powders by the solid-state reaction method. Samples were equilibrated at 1273 K for 36 000 s in air. The resulting powders were characterized by X-ray diffraction (XRD) at room temperature and by high-temperaturein situXRD. The phases present in the BaxSr1−xCoyFe1−yO3−δsystem are outlined for 1273 K in air. For most of the quaternary compositions, the cubic perovskite is formed, except for the compositions withx= 1 (excludingy= 0.4),y= 1 andx,y= 0.8, where the phases mainly show hexagonal distortions, andx, y= 0, for which a predominant cubic phase is mixed with other phases.


2016 ◽  
Vol 4 (16) ◽  
pp. 3443-3453 ◽  
Author(s):  
Kai Li ◽  
Sisi Liang ◽  
Hongzhou Lian ◽  
Mengmeng Shang ◽  
Bengang Xing ◽  
...  

A series of Ce3+ and Tb3+-doped BaLu2Si3O10 (BLSO) phosphors synthesized via the high-temperature solid-state reaction method were investigated.


2016 ◽  
Vol 10 (3) ◽  
pp. 183-188 ◽  
Author(s):  
Mohamed Afqir ◽  
Amina Tachafine ◽  
Didier Fasquelle ◽  
Mohamed Elaatmani ◽  
Jean-Claude Carru ◽  
...  

SrBi1.8Ce0.2Nb2O9 (SBCN) and SrBi1.8Ce0.2Ta2O9 (SBCT) powders were prepared via solid-state reaction method. X-ray diffraction analysis reveals that the SBCN and SBCT powders have the single phase orthorhom-bic Aurivillius structure at room temperature. The contribution of Raman scattering and FTIR spectroscopy of these samples were relatively smooth and resemble each other. The calcined powders were uniaxially pressed and sintered at 1250?C for 8 h to obtaine dense ceramics. Dielectric constant, loss tangent and AC conductivity of the sintered Ce-doped SrBi2Nb2O9 and SrBi2Ta2O9 ceramics were measured by LCR meter. The Ce-doped SBN (SBCN) ceramics have a higher Curie temperature (TC) and dielectric constant at TC (380?C and ?? ~3510) compared to the Ce-doped SBT (SBCT) ceramics (330?C and ?? ~115) when measured at 100Hz. However, the Ce-doped SBT (SBCT) ceramics have lower conductivity and dielectric loss.


Author(s):  
Hongqiang Cui ◽  
Yongze Cao ◽  
Lei Zhang ◽  
Yuhang Zhang ◽  
Siying Ran ◽  
...  

Er3+ with different concentrations doped K2Yb(PO4)(MoO4) phosphors were prepared by a solid-state reaction method, and the layered orthorhombic crystal structure of the samples was confirmed by X-ray diffraction (XRD). Under...


2021 ◽  
Vol 321 ◽  
pp. 23-27
Author(s):  
Simona Ravaszová ◽  
Karel Dvořák

The paper is focused on one of the most important component of Portland clinker-on the tricalcium silicate. The study reported in this article is focuses on the changes in crystallite size of synthetic tricalcium silicate obtained using solid state reaction method. Crystallite size changes are monitored during the grinding in three types of laboratory mills in two different conditions. Changing in crystallite size at various grinding time up to 120 minutes are studied with the aid of X-ray diffraction and using the Scherrer equation. It has been found that the most efficient laboratory mill in terms of speed and fineness of the material was the planetary mill.


2014 ◽  
Vol 07 (05) ◽  
pp. 1450060 ◽  
Author(s):  
Qun Shi ◽  
Dhia A. Hassan ◽  
Renjie Zeng

Europium-doped Na 1.45 La 8.55-8.55x( SiO 4)6( F 0.9 O 1.1)(0.000 ≤ x ≤ 0.045) phosphors were prepared by a conventional solid-state reaction method at 1200°C and their properties were studied by X-ray diffraction (XRD), and a spectral analysis system. No impurities were observed. The phosphor could be excited at 254 nm, 395 nm and 465 nm to yield a reddish orange emission which was attributed to the 5 D 0 → 7 F j (j = 0–2) transitions of the Eu ion.


2015 ◽  
Vol 3 (27) ◽  
pp. 7096-7104 ◽  
Author(s):  
Kai Li ◽  
Mengmeng Shang ◽  
Yang Zhang ◽  
Jian Fan ◽  
Hongzhou Lian ◽  
...  

A series of Ca9Bi(PO4)7:Ce3+,Tb3+,Mn2+phosphors synthesizedviathe high-temperature solid-state reaction method can emit intense tunable color from purple-blue to red including white under UV excitation, which shows their potential application in UV-pumped white-light-emitting diodes.


2016 ◽  
Vol 16 (4) ◽  
pp. 3684-3689 ◽  
Author(s):  
Xin Min ◽  
Zhaohui Huang ◽  
Minghao Fang ◽  
Yan’gai Liu ◽  
Chao Tang ◽  
...  

In this paper, M3(VO4)2 (M = Mg, Ca, Sr, and Ba) self-activated phosphors were prepared by a solid-state reaction method at 1,000 °C for 5 h. The phase formation and micrographs were analyzed by X-ray diffraction and scanning electron microscopy. The Ca3(VO4)2 phosphor does not show any emission peaks under excitation with ultraviolet (UV) light. However, the M3(VO4)2 (M = Mg, Sr, and Ba) samples are effectively excited by UV light chips ranging from 200 nm to 400 nm and exhibit broad emission bands due to the charge transfer from the oxygen 2p orbital to the vacant 3d orbital of the vanadium in the VO4. The color of these phosphors changes from yellow to light blue via blue-green with increasing ionic radius from Mg to Sr to Ba. The luminescence lifetimes and quantum yield decrease with the increasing unit cell volume and V–V distance, in the order of Mg3(VO4)2 to Sr3(VO4)2 to Ba3(VO4)2. The emission intensity decreases with the increase of temperatures, but presents no color shift. This confirms that these self-activated M3(VO4)2 phosphors can be suggested as candidates of the single-phase phosphors for light using UV light emitting diodes (LEDs).


Sign in / Sign up

Export Citation Format

Share Document