Phenomenological Models to Predict the Flow Stress up to the Peak of as-Extruded 7050 Aluminum Alloy

2017 ◽  
Vol 36 (10) ◽  
pp. 1025-1033
Author(s):  
Yu-Feng Xia ◽  
Jia Zhao ◽  
Lai Jiang ◽  
Shuai Long ◽  
Tian-yu Wang

AbstractIn order to improve the understanding of the hot flow behaviors of as-extruded 7050 aluminum alloy, a series of isothermal compression tests with a fixed height reduction of 60 % were performed at the temperatures of 573 K, 623 K, 673 K and 723 K, and the strain rates of 0.01 s−1, 0.1 s−1, 1 s−1 and 10 s−1 on a Gleeble-1500 thermo-mechanical simulator. Based on both nonlinear and linear estimations of work hardening rate versus strain curves, two phenomenological models have been developed to predict the flow stress values under different hot forming conditions up to the peak stress. The suitability levels of these two models were evaluated by comparing both the correlation coefficient (R) and the average absolute relative error (AARE). R-value and AARE-value for the linear phenomenological model are 0.9995 and 2.18 %, respectively, while the R-value and AARE-value for the nonlinear model are 0.9901 and 10.60 %, respectively. The results showed that the predictions of these two models were in good agreement with the experimental data for 7050 aluminum alloy. Fewer materials constants were involved in the linear model, and the predicting ability of the linear model is stronger than the nonlinear model.


2015 ◽  
Vol 34 (7) ◽  
pp. 643-650
Author(s):  
Guo-zheng Quan ◽  
Jin Liu ◽  
An Mao ◽  
Bo Liu ◽  
Jin-sheng Zhang

Abstract The deep understanding of flow behaviors of as-extruded 7050 aluminum alloy significantly contributes to the accuracy simulation for its various plastic forming processes. In order to obtain the improved Arrhenius-type equation with variable parameters for this alloy, a series of compression tests were performed at temperatures of 573 K, 623 K, 673 K, 723 K and strain rates of 0.01 s−1, 0.1 s−1, 1 s−1, 10 s−1 with a height reduction of 60% on Gleeble-1500 thermo-mechanical simulator. It is obvious that strain rate, strain and temperature all have a significant effect on the hot flow behaviors, and the true stress–true strain curves indicate three types after the peak value: decreasing gradually to a steady state with sustaining DRX softening till a balance with work hardening, decreasing continuously with sustaining increasing DRX softening beyond work hardening and maintaining higher stress level after the peak value with a balance between work hardening and DRV softening. Based on the experimental data, the improved Arrhenius-type constitutive model was established to predict the high temperature flow stress of as-extruded 7050 aluminum alloy. The accuracy and reliability of the improved Arrhenius-type model were further evaluated in terms of the correlation coefficient (R), here 0.98428, the average absolute relative error (AARE), here 3.5%. The results indicate that the improved Arrhenius-type constitutive model presents a good predictable ability.



2012 ◽  
Vol 233 ◽  
pp. 339-342 ◽  
Author(s):  
Ming Ping Zou ◽  
Wu Jiao Xu ◽  
Peng Cheng Wang

To investigate the hot deformation behaviors of AISI 4120 steel, isothermal compression tests were conducted using Gleeble-1500 thermal-mechanical simulator in the temperature range of 1073-1373K with the strain rate of 0.01-10s-1. The hyperbolic sine law in Arrhenius type is used in the constitutive modeling for AISI 4120. The influence of strain is incorporated in constitutive analysis by considering the effect of strain on material constants α, n, Q and ln A. The flow stress values predicted by the developed constitutive equations show a good agreement with experimental results, which reveals that the developed constitutive equations could give an accurate and precise prediction for the high temperature flow behaviors of AISI 4120 steel. The predictability of developed constitutive equation was further quantified in terms of correlation coefficient (R) and average absolute relative error (AARE). The R and AARE were found to be 0.9847 and 8.0372% respectively, which reflects the good prediction capabilities of the developed constitutive equation.



Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1169
Author(s):  
Haoran Wang ◽  
Wei Wang ◽  
Ruixue Zhai ◽  
Rui Ma ◽  
Jun Zhao ◽  
...  

Isothermal hot compression tests of 20Cr2Ni4A alloy steel were performed under temperatures of 973–1273 K and strain rates of 0.001–1 s−1. The behavior of the flow stress of 20Cr2Ni4A alloy steel at warm and hot temperatures is complicated because of the influence of the work hardening, the dynamic recovery, and the dynamic recrystallization. Four constitutive equations were used to predict the flow stress of 20Cr2Ni4A alloy steel, including the original strain-compensated Arrhenius-type (osA-type) equation, the new modified strain-compensated Arrhenius-type (msA-type) equation, the original Hensel–Spittel (oHS) equation and the modified Hensel–Spittel (mHS) equation. The msA-type and mHS are developed by revising the deformation temperatures, which can improve prediction accuracy. In addition, we propose a new method of solving the parameters by combining a linear search with multiple linear regression. The new solving method is used to establish the two modified constitutive equations instead of the traditional regression analysis. A comparison of the predicted values based on the four constitutive equations was performed via relative error, average absolute relative error (AARE) and the coefficient of determination (R2). These results show the msA-type and mHS equations are more accurate and efficient in terms of predicting the flow stress of the 20Cr2Ni4A steel at elevated temperature.



2017 ◽  
Vol 0 (0) ◽  
Author(s):  
Yu-Feng Xia ◽  
Jia Zhao ◽  
Lai Jiang ◽  
Shuai Long ◽  
Tian-yu Wang


2016 ◽  
Vol 879 ◽  
pp. 2119-2124
Author(s):  
Yong Fu Wu ◽  
Hui Xue Jiang ◽  
Chun Zou ◽  
Kang Cai Yu ◽  
Hiromi Nagaumi

Evolution behavior of pores in 7050 aluminum alloy during hot compression process has been investigated by finite element (FE) numerical simulation. The representative volume element (RVE) model containing one isolated pore is built, in which the gas in pore is treated as ideal gas. Effects of initial pore inner pressure and deformation temperature on pore evolution have been investigated. The simulation results indicate that stress concentration exists around the pore in the compressing process. At the simple compression condition, the inner pressure of the pore increases but the volume decreases as the bulk metals deforms. However, the volume reaches a plateau after the yield point of bulk metal. The plateau volume depends on the initial inner pressure of the pore and the flow stress of the bulk metal. Since the inner pressure of the pore balances with the flow stress of bulk metal at the interface, the temperature affects the evolution behavior of the pore through its influence on the flow stress of the bulk metal primarily.



2018 ◽  
Vol 37 (1) ◽  
pp. 75-87
Author(s):  
Jun Cai ◽  
Kuaishe Wang ◽  
Jiamin Shi ◽  
Wen Wang ◽  
Yingying Liu

AbstractConstitutive analysis for hot working of BFe10-1-2 alloy was carried out by using experimental stress–strain data from isothermal hot compression tests, in a wide range of temperature of 1,023~1,273 K, and strain rate range of 0.001~10 s–1. A constitutive equation based on modified double multiple nonlinear regression was proposed considering the independent effects of strain, strain rate, temperature and their interrelation. The predicted flow stress data calculated from the developed equation was compared with the experimental data. Correlation coefficient (R), average absolute relative error (AARE) and relative errors were introduced to verify the validity of the developed constitutive equation. Subsequently, a comparative study was made on the capability of strain-compensated Arrhenius-type constitutive model. The results showed that the developed constitutive equation based on modified double multiple nonlinear regression could predict flow stress of BFe10-1-2 alloy with good correlation and generalization.



2019 ◽  
Vol 38 (2019) ◽  
pp. 699-714 ◽  
Author(s):  
Bing Zhang ◽  
Xiaodi Shang ◽  
Su Yao ◽  
Qiuyu Wang ◽  
Zhijuan Zhang ◽  
...  

AbstractThe true strain data and true stress data are obtained from the isothermal compression tests under a wide range of strain rates (0.1–20 s−1) and temperatures (933–1,133 K) over the Gleeble-3500 thermomechanical simulator. The data are employed to generate the constitutive equations according to four constitutive models, respectively, the strain-compensated Arrhenius-type model, the modified Zerilli–Armstrong (ZA) model, the modified Johnson–Cook (JC) model and the JC model. In the meanwhile, a comparative research was made over the capacities of these four models and hence to represent the elevated temperature flow behavior of TA2. Besides, a comparison of the accuracy of the predictions of average absolute relative error, correlation coefficient (R) and the deformation behavior was made to test the sustainability level of these four models. It is shown from these results that the JC model is not suitable for the description of flow behavior of TA2 alloy in α+β phase domain, while the predicted values of modified JC model, modified ZA model and the strain-compensated Arrhenius-type model could be consistent well with the experimental values except under some deformation conditions. Moreover, the strain-compensated Arrhenius-type model can be also used to track the deformation behavior more precisely in comparison with other models.



Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1985 ◽  
Author(s):  
Jiang Li ◽  
Fuguo Li ◽  
Jun Cai

To investigate the flow stress, microstructure, and usability of TA15 titanium alloy, isothermal compression was tested at 1073–1223 K and strain rates of 10, 1, 0.1, 0.01, and 0.001 s−1, and strain of 0.9. The impact of strain and temperature on thermal deformation was investigated through the exponent-type Zener–Hollomon equation. Based on the influence of various material constants (including α, n, Q, and lnA) on the TA15 titanium alloy, the strain effect was included in the constitutive equation considering strain compensation, which is presented in this paper. The validity of the proposed constitutive equation was verified through the correlation coefficient (R) and the average absolute relative error (AARE), the values of which were 0.9929% and 6.85%, respectively. Research results demonstrated that the strain-based constitutive equation realizes consistency between the calculated flow stress and the measured stress of TA15 titanium alloy at high temperatures.





2013 ◽  
Vol 811 ◽  
pp. 152-156
Author(s):  
Li Bin Jia ◽  
Lin Li ◽  
Yi Ru

In order to study the hot workability of TC21 titanium alloy, isothermal hot compression tests were conducted in the temperatures range of 1123~1203K and strain rates range of 0.01~10s-1. The influence of strain was incorporated in hyperbolic sine constitutive equation by considering the effect of strain on material constants. Correlation coefficient (R) and average absolute relative error (AARE) were introduced to verify the validity of the developed hyperbolic sine constitutive equation. The values of R and AARE were determined to be 0.9891 and 7.753% respectively, which indicated that the developed hyperbolic sine constitutive equation considering strain compensation could precisely predict the flow behavior of TC21 titanium alloy throughout the entire range of temperatures and strain rates.



Sign in / Sign up

Export Citation Format

Share Document