Static and non-linguistic quantitative indicators to evaluate Japanese comic dialogues of Manzai

2018 ◽  
Vol 31 (1) ◽  
pp. 39-64
Author(s):  
Tetsuya Maeshiro

AbstractThis paper proposes the use of quantitative indicators to evaluate the comedic success of Japanese “Manzai” performances without using semantic processing or time sequence information. The validity of the proposed indicators was verified by predicting the rankings of the final rounds and decision matches of ten M1 Grand Prix, a national-level humor contest in Japan, using leave-one-out cross validation. The results demonstrate that the proposed indicators are able to predict the ranking of Manzai championships as the mean prediction precision was 0.58 (rank correlation) for final rounds, and 0.70 (champion prediction accuracy) for the decision matches.

2011 ◽  
Vol 4 ◽  
pp. BII.S6935 ◽  
Author(s):  
Chih Lee ◽  
Brittany Nkounkou ◽  
Chun-Hsi Huang

In this work, we investigate the well-known classification algorithm LDA as well as its close relative SPRT. SPRT affords many theoretical advantages over LDA. It allows specification of desired classification error rates α and β and is expected to be faster in predicting the class label of a new instance. However, SPRT is not as widely used as LDA in the pattern recognition and machine learning community. For this reason, we investigate LDA, SPRT and a modified SPRT (MSPRT) empirically using clinical datasets from Parkinson's disease, colon cancer, and breast cancer. We assume the same normality assumption as LDA and propose variants of the two SPRT algorithms based on the order in which the components of an instance are sampled. Leave-one-out cross-validation is used to assess and compare the performance of the methods. The results indicate that two variants, SPRT-ordered and MSPRT-ordered, are superior to LDA in terms of prediction accuracy. Moreover, on average SPRT-ordered and MSPRT-ordered examine less components than LDA before arriving at a decision. These advantages imply that SPRT-ordered and MSPRT-ordered are the preferred algorithms over LDA when the normality assumption can be justified for a dataset.


2019 ◽  
Vol 60 (6) ◽  
pp. 818-824 ◽  
Author(s):  
Takuya Mizutani ◽  
Taiki Magome ◽  
Hiroshi Igaki ◽  
Akihiro Haga ◽  
Kanabu Nawa ◽  
...  

ABSTRACT The purpose of this study was to predict the survival time of patients with malignant glioma after radiotherapy with high accuracy by considering additional clinical factors and optimize the prescription dose and treatment duration for individual patient by using a machine learning model. A total of 35 patients with malignant glioma were included in this study. The candidate features included 12 clinical features and 192 dose–volume histogram (DVH) features. The appropriate input features and parameters of the support vector machine (SVM) were selected using the genetic algorithm based on Akaike’s information criterion, i.e. clinical, DVH, and both clinical and DVH features. The prediction accuracy of the SVM models was evaluated through a leave-one-out cross-validation test with residual error, which was defined as the absolute difference between the actual and predicted survival times after radiotherapy. Moreover, the influences of various values of prescription dose and treatment duration on the predicted survival time were evaluated. The prediction accuracy was significantly improved with the combined use of clinical and DVH features compared with the separate use of both features (P < 0.01, Wilcoxon signed rank test). Mean ± standard deviation of the leave-one-out cross-validation using the combined clinical and DVH features, only clinical features and only DVH features were 104.7 ± 96.5, 144.2 ± 126.1 and 204.5 ± 186.0 days, respectively. The prediction accuracy could be improved with the combination of clinical and DVH features, and our results show the potential to optimize the treatment strategy for individual patients based on a machine learning model.


2018 ◽  
Vol 50 (1) ◽  
pp. 43-59 ◽  
Author(s):  
Alberto Martínez-Salvador ◽  
Carmelo Conesa-García

Abstract Many models have been developed to predict the sediment transport in watercourses. This paper attempts to test the effectiveness of log-linear models (LLM) to estimate the suspended (S-LMM), dissolved (D-LLM), and total suspended (T-LLM) load into a Mediterranean semiarid karst stream (the Argos River basin, in southeast Spain). An assessment of the supposed validity of each model and a leave-one-out cross-validation were carried out to determine their degree of statistical robustness. The T-LLM model showed higher prediction accuracy (R2 = 0.98, RMSE = 0.15, and PE = ±5.4–6.6%) than the D-LLM model (R2 = 0.97, RMSE = 0.16, and PE = ±5.5–6.8%) or the D-LLM model (R2 = 0.77, RMSE = 0.71, and PE = ±101–493%). In addition, different model variants, according to two flow patterns (FP1 = base flow and FP2 = rising water level), were developed. The FP2-SLLM model provided a very good fit (R2 = 0.94, RMSE = 0.34, and PE = ±25.3–61.5%), substantially improving the results of the S-LLM model.


2015 ◽  
Vol 13 (04) ◽  
pp. 1550014 ◽  
Author(s):  
Bo Liao ◽  
Sumei Ding ◽  
Haowen Chen ◽  
Zejun Li ◽  
Lijun Cai

Identifying the microRNA–disease relationship is vital for investigating the pathogenesis of various diseases. However, experimental verification of disease-related microRNAs remains considerable challenge to many researchers, particularly for the fact that numerous new microRNAs are discovered every year. As such, development of computational methods for disease-related microRNA prediction has recently gained eminent attention. In this paper, first, we construct a miRNA functional network and a disease similarity network by integrating different information sources. Then, we further introduce a new diffusion-based method (NDBM) to explore global network similarity for miRNA–disease association inference. Even though known miRNA–disease associations in the database are rare, NDBM still achieves an area under the ROC curve (AUC) of 85.62% in the leave-one-out cross-validation in improving the prediction accuracy of previous methods significantly. Moreover, our method is applicable to diseases with no known related miRNAs as well as new miRNAs with unknown target diseases. Some associations who strongly predicted by our method are confirmed by public databases. These superior performances suggest that NDBM could be an effective and important tool for biomedical research.


2020 ◽  
Author(s):  
Manabu Sakamoto

ABSTRACTBite force is an ecologically important biomechanical performance measure is informative in inferring the ecology of extinct taxa. However, biomechanical modelling to estimate bite force is associated with some level of uncertainty. Here, I assess the accuracy of bite force estimates in extinct taxa using a Bayesian phylogenetic prediction model. I first fitted a phylogenetic regression model on a training set comprising extant data. The model predicts bite force from body mass and skull width while accounting for differences owning to biting position. The posterior predictive model has a 93% prediction accuracy as evaluated through leave-one-out cross-validation. I then predicted bite force in 37 species of extinct mammals and archosaurs from the posterior distribution of predictive models.Biomechanically estimated bite forces fall within the posterior predictive distributions for all except four species of extinct taxa, and are thus as accurate as that predicted from body size and skull width, given the variation inherent in extant taxa and the amount of time available for variance to accrue. Biomechanical modelling remains a valuable means to estimate bite force in extinct taxa and should be reliably informative of functional performances and serve to provide insights into past ecologies.


2014 ◽  
Vol 33 (10) ◽  
pp. 723-727
Author(s):  
M. Westermann ◽  
I. W. Husstedt ◽  
A. Okegwo ◽  
S. Evers

SummaryEvent-related potentials (ERP) are regarded as age dependent. However, it is not known whether this is an intrinsic property of ERP or an extrinsic factor. We designed a setting in which ERP were evoked using a modified oddball paradigm with highly differentiable and detectable target and non-target stimuli. A total of 98 probands were enrolled in this study. We evaluated the latency and amplitude of the P3 component of visually evoked ERP. The mean P3 latency was 294 ± 28 ms and was not related to age (r = –0.089; p = 0.382; Spearman-rank-correlation). The P3 amplitude was related to age in the total sample (r = –0.323; p = 0.001; Spearmanrank-correlation) but not in the probands under the age of 60 years. There were no significant differences regarding sex. Our findings suggest that ERP are not age dependent if highly differentiable and detectable stimuli are used. This should be considered when normal values of ERP are created for clinical use.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shawn Gu ◽  
Tijana Milenković

Abstract Background Network alignment (NA) can transfer functional knowledge between species’ conserved biological network regions. Traditional NA assumes that it is topological similarity (isomorphic-like matching) between network regions that corresponds to the regions’ functional relatedness. However, we recently found that functionally unrelated proteins are as topologically similar as functionally related proteins. So, we redefined NA as a data-driven method called TARA, which learns from network and protein functional data what kind of topological relatedness (rather than similarity) between proteins corresponds to their functional relatedness. TARA used topological information (within each network) but not sequence information (between proteins across networks). Yet, TARA yielded higher protein functional prediction accuracy than existing NA methods, even those that used both topological and sequence information. Results Here, we propose TARA++ that is also data-driven, like TARA and unlike other existing methods, but that uses across-network sequence information on top of within-network topological information, unlike TARA. To deal with the within-and-across-network analysis, we adapt social network embedding to the problem of biological NA. TARA++ outperforms protein functional prediction accuracy of existing methods. Conclusions As such, combining research knowledge from different domains is promising. Overall, improvements in protein functional prediction have biomedical implications, for example allowing researchers to better understand how cancer progresses or how humans age.


Sign in / Sign up

Export Citation Format

Share Document