Towards Production of γ-valerolactone via Hydrogenation of Aqueous Levulinic Acid

2015 ◽  
Vol 13 (1) ◽  
pp. 119-127 ◽  
Author(s):  
B.T. Huang ◽  
S. Leveneur ◽  
T. Zamar ◽  
J.P. Mikkola ◽  
B. Taouk

Abstract Synthesis of GVL (γ-valerolactone) via hydrogenation of aqueous LA (levulinic acid) with H2 over heterogeneous catalyst (Ru/C) was investigated. In the first part, a study of the influence of various operating conditions was conducted including that of temperature (90–180°C), stirring rate (500–1200 rpm), catalyst loading (0.1–2.0 g), hydrogen pressure (0.4–2.8 MPa) and initial LA concentration (0.5–2 M). In the second part, influence of supercritical CO2 (scCO2) on hydrogenation rate and GVL yield were investigated. Hydrogenation of aqueous LA under scCO2 and under N2 atmosphere was carried out in batch reactor at 150°C and was compared with the case when no additional gases were present. The result indicated that the use of scCO2 had no beneficial effect neither in terms of LA conversion nor hydrogenation rate when the amount of hydrogen was relatively low compared to the stoichiometry. This effect was mitigated when more hydrogen was present.

2017 ◽  
Vol 23 (4) ◽  
pp. 573-580 ◽  
Author(s):  
Sema Akyalcin

The kinetics of the hydration of propylene oxide was studied using a pressurized batch reactor for both uncatalyzed and heterogeneously catalyzed reactions. Lewatit MonoPlus M500/HCO3 - was used as heterogeneous catalyst, which showed better performance than Dowex Marathon A/HCO3 -. The effects of the parameters, namely internal and external diffusion resistances, temperature, catalyst loading and mole ratios of reactants, on the reaction rate were studied. The uncatalyzed and heterogeneously catalyzed reactions were proven to follow a series-parallel irreversible homogeneous mechanism. The temperature dependencies of the rate constants appearing in the rate expressions were determined.


2012 ◽  
Vol 14 (3) ◽  
pp. 38-47 ◽  
Author(s):  
Zrinka Mastelic Samardzic ◽  
Stanka Zrncevic

1 Catalytic hydrogenation of 2-((1-benzyl-1,2,3,6-tetrahydropyridin-4-yl)methylene)-5,6-dimethoxy-2,3-dihydroinden- 1-one hydrochloride () to 2-((1-benzylpiperidin-4-yl)methyl)-5,6-dimethoxy-2,3-dihydroinden- 1-one hydrochloride (2) was investigated in the batch-slurry reactor. The 5% Pt/C catalyst was chosen to search the optimal reaction conditions because of its higher catalytic activity compared to other catalysts used in the work. To investigate the catalyst activity, selectivity and stability, the effect of agitation speed, catalyst loading, solvent, temperature, hydrogen pressure and catalyst reuse were studied. The initial rate of hydrogenation increases with the increase of catalyst loading, with the temperature and solvent polarity, if alcohols were used as solvents. The hydrogenation rate decreases with higher hydrogen pressure and that was explained by competitive adsorption of both reactants. The results also indicate that 5% Pt/C is a promising catalyst for 1 hydrogenation because at relatively mild reaction conditions selectivity towards main product was high (98%) and catalyst maintains its activity during successive runs.


1994 ◽  
Vol 30 (6) ◽  
pp. 237-246 ◽  
Author(s):  
A. Carucci ◽  
M. Majone ◽  
R. Ramadori ◽  
S. Rossetti

This paper describes a lab-scale experimentation carried out to study enhanced biological phosphate removal (EBPR) in a sequencing batch reactor (SBR). The synthetic feed used was based on peptone and glucose as organic substrate to simulate the readily biodegradable fraction of a municipal wastewater (Wentzel et al., 1991). The experimental work was divided into two runs, each characterized by different operating conditions. The phosphorus removal efficiency was considerably higher in the absence of competition for organic substrate between P-accumulating and denitrifying bacteria. The activated sludge consisted mainly of peculiar microorganisms recently described by Cech and Hartman (1990) and called “G bacteria”. The results obtained seem to be inconsistent with the general assumption that the G bacteria are characterized by anaerobic substrate uptake not connected with any polyphosphate metabolism. Supplementary anaerobic batch tests utilizing glucose, peptone and acetate as organic substrates show that the role of acetate in the biochemical mechanisms promoting EBPR may not be so essential as it has been assumed till now.


2020 ◽  
Vol 1000 ◽  
pp. 257-264
Author(s):  
Bambang Heru Susanto ◽  
Joshua Raymond Valentino Siallagan

Bio-Jet could be produced by the synthesis of vegetable oil through the hydrodeoxygenation, decarboxylation, decarbonization, and catalytic cracking process. Physical characteristics, activities, and selectivity of the catalyst used will determine the rate, conversion, and yield of the reaction that being carried out. This study aims to compare and obtain the best characteristics of NiMoP/γ-Al2O3 catalysts synthesized using two types of preparation, impregnation and microwave polyol methods, which will be used for bio-jet production. The impregnation method takes more than 24 hours for catalyst preparation, while microwave polyols that use microwaves can synthesize catalysts faster. Both catalysts have almost the same loading on the weight of the catalyst, which in the microwave polyol method has a more dispersed promotor and active site, although the crystallinity level is deficient and tends to be amorphous compared to the impregnation method with high crystallinity. In bio-jet synthesis reaction with operating conditions of 5% catalyst loading by comparison to Coconut Oil, 400°C, and 15 bar, the conversion, yield, and selectivity of catalyst impregnation were 91.705%, 47.639%, and 84.511%, while microwave polyol catalysts were 90.296%, 42.752%, and 82.517%, respectively. In conclusion, microwave polyol provides a more effective and efficient preparation method.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 656
Author(s):  
Henrietta Kovács ◽  
Krisztina Orosz ◽  
Gábor Papp ◽  
Ferenc Joó ◽  
Henrietta Horváth

Na2[Ir(cod)(emim)(mtppts)] (1) with high catalytic activity in various organic- and aqueous-phase hydrogenation reactions was immobilized on several types of commercially available ion-exchange supports. The resulting heterogeneous catalyst was investigated in batch reactions and in an H-Cube flow reactor in the hydrogenation of phenylacetylene, diphenylacetylene, 1-hexyne, and benzylideneacetone. Under proper conditions, the catalyst was highly selective in the hydrogenation of alkynes to alkenes, and demonstrated excellent selectivity in C=C over C=O hydrogenation; furthermore, it displayed remarkable stability. Activity of 1 in hydrogenation of levulinic acid to γ-valerolactone was also assessed.


2018 ◽  
Vol 192 ◽  
pp. 03006
Author(s):  
Jakkrapong Jitjamnong

The purpose of this research was to investigate the catalytic activity of Ba loading on calcium oxide (CaO) catalyst by varying the amount of barium added during the synthesis: 5-15 wt%. The waste egg shells were utilized as a CaO heterogeneous catalyst by calcined at 900 °C for 2 h. The Ba/CaO catalysts were prepared by impregnation method and were used as a catalyst in transesterification reaction of canola oil via microwave irradiation under microwave power 300 W. The characterization of catalyst and FAME composition of biodiesel were determined by X-ray fluorescence (XRF), scanning electron microscope (SEM), Fourier transform infrared spectrometer (FTIR), and gas chromatography (GC-FID). The conditions of biodiesel production were operated at 60 °C, 3 wt% of catalyst loading, 9:1 methanol-to-canola oil ratio, and microwave irradiation power was 300W for 2 min. The experimental results found that, the waste egg shells consist mainly of CaCO3, which was decomposed to CaO more than 88 wt% after cacination step. The 15 wt% Ba/CaO catalysts exhibited the best catalytic performance with the FAME conversion higher than 97.68%.


2015 ◽  
Vol 13 (3) ◽  
pp. 389-393 ◽  
Author(s):  
Emine Sert

Abstract Within the framework of green chemistry, catalysts should be met different criteria such as biodegradability, recyclability, flammability, non-toxicity and low price. Acidic deep eutectic solvent (DES) have been synthesized for this purpose, by mixing para-toluene sulfonic acid and choline chloride. The catalytic activity of DES was studied in the esterification of acrylic acid with n-butanol. The usage of DES as catalyst is simple, safe and cheap. The effects of temperature, catalyst loading, n-butanol/acrylic acid molar ratio on the conversion of acrylic acid were performed. The batch reactor experiments were carried out at temperatures of 338, 348, 358 and 368 K, molar ratio of butanol to acrylic acid of 1, 2,3 and catalyst loading of 10, 15, 20 and 90 g/L. 90.2% of acrylic acid conversion was achieved at a temperature of 358 K and catalyst loading of 20 g/L. Reusability of DES was investigated. Reusability and catalytic activity makes DES efficient as catalyst.


2006 ◽  
Vol 6 (2) ◽  
pp. 82
Author(s):  
Iwan Harsono ◽  
Herman Hindarso ◽  
Nani Indraswati

It has been long recognized that emulsion polymerization is a complex heterogeneous process involving transport of monomers and other species and free radicals between aqueous phase and organic phases. Though there are a number of models available in the literature, most of them deal only with specific aspects in emulsion polymerization and are far from being general. To simulate this complicated process and to achieve an adequate level of understanding, a Polymer Plus' software from Aspen Technology, Inc. has been used. The objective of this work is to illustrate the principle use of Polymers Plus' and to simulate and analysis the free-radical seeded emulsion copolymerization of styrene-butadiene process model in a semi-batch reactor. The base case simulation can be used to gain process understanding by analyzing how process variables and operating conditions during the course of a semi-batch reactor affect product quality.


2021 ◽  
Author(s):  
Meutia Ermina Toif ◽  
Muslikhin Hidayat ◽  
Rochmadi Rochmadi ◽  
Arief Budiman

Abstract Glucose is the primary derivative of lignocellulosic biomass, which is abundantly available. Glucose has excellent potential to be converted into valuable compounds such as ethanol, sorbitol, gluconic acid, and levulinic acid (LA). Levulinic acid is a very promising green platform chemical. It is composed of two functional groups, ketone and carboxylate groups which can act as highly reactive electrophiles for nucleophilic attack so it has extensive applications, including fuel additives, raw materials for the pharmaceutical industry, and cosmetics. The reaction kinetics of LA synthesis from glucose using hydrochloric acid catalyst (bronsted acid) were studied in a wide range of operating conditions, i.e., temperature of 140-180 oC, catalyst concentration of 0.5-1.5 M, and initial glucose concentration of 0.1-0.5 M. The highest LA yield is 48.34 %wt at 0.1 M initial glucose concentration, 1 M HCl, and temperature of 180 oC. The experimental results show that the bronsted acid catalyst's reaction pathway consists of glucose decomposition to levoglucosan (LG), conversion of LG to 5-hydroxymethylfurfural (HMF), and rehydration of HMF to LA. The experimental data yields a good fitting by assuming a first-order reaction model.


Sign in / Sign up

Export Citation Format

Share Document