scholarly journals Behaviour and Stability of the Two-Fluid Model for Fine-Scale Simulations of Bubbly Flow in Nuclear Reactors

2015 ◽  
Vol 13 (4) ◽  
pp. 449-459 ◽  
Author(s):  
Henrik Ström ◽  
Srdjan Sasic ◽  
Klas Jareteg ◽  
Christophe Demazière

Abstract In the present work, we formulate a simplistic two-fluid model for bubbly steam-water flow existing between fuel pins in nuclear fuel assemblies. Numerical simulations are performed in periodic 2D domains of varying sizes. The appearance of a non-uniform volume fraction field in the form of meso-scales is investigated and shown to be varying with the bubble loading and the domain size, as well as with the numerical algorithm employed. These findings highlight the difficulties involved in interpreting the occurrence of instabilities in two-fluid simulations of gas-liquid flows, where physical and unphysical instabilities are prone to be confounded. The results obtained in this work therefore contribute to a rigorous foundation in on-going efforts to derive a consistent meso-scale formulation of the traditional two-fluid model for multiphase flows in nuclear reactors.

2014 ◽  
Vol 62 (3) ◽  
pp. 234-240 ◽  
Author(s):  
Gianandrea Vittorio Messa ◽  
Stefano Malavasi

Abstract The flow of a mixture of liquid and solid particles at medium and high volume fraction through an expansion in a rectangular duct is considered. In order to improve the modelling of the phenomenon with respect to a previous investigation (Messa and Malavasi, 2013), use is made of a two-fluid model specifically derived for dense flows that we developed and implemented in the PHOENICS code via user-defined subroutines. Due to the lack of experimental data, the two-fluid model was validated in the horizontal pipe case, reporting good agreement with measurements from different authors for fully-suspended flows. A 3D system is simulated in order to account for the effect of side walls. A wider range of the parameters characterizing the mixture (particle size, particle density, and delivered solid volume fraction) is considered. A parametric analysis is performed to investigate the role played by the key physical mechanisms on the development of the two-phase flow for different compositions of the mixture. The main focuses are the distribution of the particles in the system and the pressure recovery


2009 ◽  
Vol 131 (9) ◽  
Author(s):  
A. K. Das ◽  
P. K. Das ◽  
J. R. Thome

The two fluid model is used to simulate upward gas-liquid bubbly flow through a vertical conduit. Coalescence and breakup of bubbles have been accounted for by embedding the population balance technique in the two fluid model. The simulation enables one to track the axial development of the voidage pattern and the distribution of the bubbles. Thereby it has been possible to propose a new criterion for the transition from bubbly to slug flow regime. The transition criteria depend on (i) the breakage and coalescence frequency, (ii) the bubble volume count below and above the bubble size introduced at the inlet, and (iii) the bubble count histogram. The prediction based on the present criteria exhibits excellent agreement with the experimental data. It has also been possible to simulate the transition from bubbly to dispersed bubbly flow at a high liquid flow rate using the same model.


2011 ◽  
Vol 217-218 ◽  
pp. 1372-1379
Author(s):  
Yu Hui Wang ◽  
Xuan Hui Qu ◽  
Wang Feng Zhang ◽  
Yan Li

The powder injection molding (PIM) combines the thermoplastic and powder metallurgy technologies to manufacture intricate parts to nearly shape. The powder segregation is a special effect arising in PIM different from than the pure polymer injection. The two-fluid flow model is used to describe the flows of binder and powder so as to realize the prediction of powder segregation effect in PIM injection. To take into account binder–powder interaction, the mixture model of inter-phase exchange term is introduced in the two-fluid model. The two-fluid equations largely resemble those for single-fluid flow but are represented in terms of the mixture density and velocity. The volume fraction for each dispersed phase is solved from a phase continuity equation. As the key to calculate the phase exchange term, the drag coefficient is defined as a function of mixture viscosity. The effective viscosity of binder and powder are agreed with the additive principle. The volume fractions of binder and powder give directly the evolution of segregation during the injection course. Segregation during PIM injection was simulated by software CFX and results were compared with experimental data with good agreement. The basic reasons that caused segregation are identified as boundary effect, differences in density and viscosity of binder and powder. The segregation zones are well predicted. This showed that the two-fluid model is valid and efficient for the prediction of the segregation effects in PIM injection.


1970 ◽  
Vol 3 ◽  
pp. 26-27
Author(s):  
Ignacio Julián ◽  
David González ◽  
Javier Herguido ◽  
Miguel Menéndez

A geometrical technique based on shape construction was employed to reconstruct the simulated domain of 3D bubbles in gas-solid fluidized beds from Two-Fluid Model simulations. The Delaunay triangulation of the cloud of points that represent volume fraction iso-surfaces was filtered using α-shapes, allowing a topologically accurate description of the bubbles.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5776
Author(s):  
Yongzhong Zeng ◽  
Weilin Xu

Bubble flow can be simulated by the two-fluid model and the multi-fluid model based on the Eulerian method. In this paper, the gas phase was further divided into several groups of dispersed phases according to the diameter by using the Eulerian-Eulerian (E-E) multi-fluid model. The diameters of bubbles in each group were considered to be the same, and their distributions were reorganized according to a specific probability density function. The experimental data of two kinds of bubble flow with different characteristics were used to verify the model. With the help of the open-source CFD software, OpenFOAM-7.x (OpenFOAM-7.0, produced by OpenFOAM foundation, Reading, England), the influences of the group number, the probability distribution function, and the parameters of different bubble diameters on the calculation results were studied. Meanwhile, the numerical simulation results were compared with the two-fluid model and the experimental data. The results show that for the bubble flow with the unimodal distribution, both the multi-fluid model and the two-fluid model can obtain the distribution of gas volume fraction along the pipe radius. The calculation results of the multi-fluid model agree with the experimental data, while those of the two-fluid model differ greatly from the experimental data, which verifies the advantage of the multi-fluid model in calculating the distribution of gas volume fraction in the polydisperse bubble flow. Meanwhile, the multi-fluid model can be used to accurately predict the distribution of the parameters of each phase of the bubble flow if the reasonable bubble diameter distribution is provided and the appropriate interphase force calculation model is determined.


Author(s):  
R. Meller ◽  
F. Schlegel ◽  
M. Klein

AbstractThe predictive simulation of gas–liquid multiphase flows at industrial scales reveals the challenging task to consider turbulence and interfacial structures, which span a large range of length scales. For simulation of relevant applications, a hybrid model can be utilised, which combines the Euler–Euler model for the description of small interfacial structures with a volume-of-fluid model as a scale-resolving multiphase approach. Such a hybrid model needs to be able to simulate interfaces, which are hardly resolved on a coarse numerical grid. The goal of this work is to improve the prediction of interfacial gas–liquid flows on a numerical grid with comparably large grid spacing. From the low-pass filtering of the two-fluid model five unclosed sub-grid scale terms arise. The convective and the surface tension part of the aforementioned contributions are individually modelled with multiple closure formulations. Those models are a-posteriori assessed in cases of two- and three-dimensional gas bubbles rising in stagnant liquid. It is shown, that the chosen closure modelling approach is suitable to improve the predictive power of the numerical model utilised in this work. Hence, simulation results on comparably coarse grids are changed towards results obtained with higher spatial resolution.


Sign in / Sign up

Export Citation Format

Share Document