Moisture Sorption Isotherms, Isosteric Heat of Sorption and Glass Transition Temperature of Murtilla (Ugni molinae T.) Berry

2014 ◽  
Vol 10 (4) ◽  
pp. 583-594 ◽  
Author(s):  
Kong S. Ah-Hen ◽  
Roberto Lemus-Mondaca ◽  
Karen A. Mathias-Rettig ◽  
Antonio Vega-Gálvez ◽  
Jessica López

Abstract Adsorption and desorption isotherms of fresh and dried murtilla (Ugni molinae Turcz) berries were determined at 20, 40 and 60°C using a gravimetric technique. The experimental data obtained were fitted to eight models, namely GAB, BET, Henderson, Caurie, Smith, Oswin, Halsey and Iglesias–Chirife. A non-linear least square regression analysis was used to evaluate the models. The GAB model best fitted the experimental data. Isosteric heat of sorption was determined from the equilibrium sorption data using the Clausius–Clapeyron equation and was found to decrease exponentially with increasing moisture content. The enthalpy–entropy compensation theory applied to the sorption isotherms indicated an enthalpy controlled sorption process. Glass transition temperature of murtilla was determined by differential scanning calorimetry and modelled as a function of moisture content by the Gordon–Taylor equation and as function of water activity by Roos and Khalloufi models, which proved to be excellent tools for predicting glass transition of murtilla.

Author(s):  
Gentil Andres Collazos-Escobar ◽  
Nelson Gutiérrez-Guzmán ◽  
Henry Alexander Vaquiro-Herrera ◽  
Erika Tatiana Cortes-Macias

The aim of this work was determine the sorption isotherms in roasted beans of specialty coffee at temperatures of 25, 30 and 40 °C and water activities between 0.1 and 0.8 using the dynamic dew point method. The experimental sorption data were modeled using 12 different equations to represent the dependence of equilibrium moisture content with aw and temperature. The net isosteric heat of sorption was determined from the experimental sorption data using the Clausius-Clapeyron equation. The Weibull model satisfactorily modeled the effect of the temperature on the hygroscopic equilibrium in roasted coffee beans (R2adj =0.902 and RMSE = 0.00550 kg·kg-1d.b.). The net isosteric heat of sorption increase with increased moisture content. Keywords: water activity; sorption properties; equilibrium moisture content; hygroscopicity


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Juan Carlos Lucas Aguirre ◽  
German Antonio Giraldo Giraldo ◽  
Misael Cortés Rodríguez

PurposeIn order to understand interactions aw vs equilibrium moisture content (EMC) in fortified coconut powder, moisture sorption isotherms were constructed under different storage conditions in order to predict the changes in their physical, chemical and microbiological properties that occur during storage and processing, which are unique to each food.Design/methodology/approachFor which the moisture sorption isotherms were determined at three different temperatures (15, 25 and 35 °C), in a range of water activity from 0.1 to 0.90. Nine models, namely, the GAB, BET, Oswin, Smith, Halsey, Henderson, Chung and Pfost, Peleg and Caurie equations, were fitted to the sorption data. Various statistical tests were adopted as criteria to evaluate the fit performance of the models.FindingsOf the models tested, the Peleg model gave the best fit to experimental data (R2 = 0.997; RMSE = 0.276), across the full range of water activities and at different temperatures. Humidity of the monolayer (mo) was found between 2.54 and 2.34%, a fundamental parameter to define the storage and control conditions, given that it is considered the value at which the product is more stable. The net sorption isosteric heat (Qst) increased to maximum and then diminished with increased moisture content (Xw); maximum values were obtained in the Xw interval between 0.48 and 2.87% (db), being between 35.72 and 99.26 kJ/mol, where the maximum value indicates coverage of the strongest bond sites and higher adsorbate-adsorbent interaction.Originality/valueThese results provide reliable experimental data on water absorption isotherms of the CP + FAC important to determine optimal processing, storing and packaging conditions.


2011 ◽  
Vol 83 (2) ◽  
pp. 934-939 ◽  
Author(s):  
Kiyoshi Kawai ◽  
Ken Fukami ◽  
Pariya Thanatuksorn ◽  
Chotika Viriyarattanasak ◽  
Kazuhito Kajiwara

2008 ◽  
Vol 85 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Athanasia M. Goula ◽  
Thodoris D. Karapantsios ◽  
Dimitris S. Achilias ◽  
Konstantinos G. Adamopoulos

2007 ◽  
Vol 13 (3) ◽  
pp. 231-238 ◽  
Author(s):  
P.C. Corrêa ◽  
A.L.D. Goneli ◽  
C. Jaren ◽  
D.M. Ribeiro ◽  
O. Resende

This study was carried out to evaluate the sorption isotherms of peanut pods, kernels and hulls for several temperature and humidity conditions and to fit different mathematical models to the experimental data, selecting the one best fitting the phenomenon. The dynamic method was applied to obtain the hygroscopic equilibrium moisture content. The environmental conditions were provided by means of an atmospheric conditioning unit, in which removable perforated trays were placed to allow air to pass through peanut mass, each one containing 50 g of the product. The mathematical models frequently used for the representation of hygroscopicity of agricultural products were fit to the experimental data. Based on those results, it was concluded that peanut pods, kernels and hulls presented differentiated hygroscopicity. The equilibrium moisture content for peanut pods, kernels and hulls increased with an increase in the relative humidity at any particular temperature and decreased with increase in temperature at constant relative humidity. At a constant water activity, peanut hulls samples had higher equilibrium moisture content than the pods and kernels samples. Based on statistical parameters, the modified Henderson and Chung-Pfost models were found to adequately describe the sorption characteristics of peanut pods, kernels and hulls. Isosteric heat of desorption were evaluated by applying the Clausius—Clapeyron equation to experimental isotherms and decreased with increasing moisture content. The peanut hulls had higher isosteric heat of sorption than that peanut pods and kernels.


2016 ◽  
Vol 69 (1) ◽  
pp. 7845-7854 ◽  
Author(s):  
Aura Yazmin Coronel Delgado ◽  
Héctor José Ciro Velásquez ◽  
Diego Alonso Restrepo Molina

This study aimed to evaluate the thermodynamic properties of sorption isotherms and glass transition temperature (Tg) and the thermal properties of a dye powder obtained from turmeric extracts using spray drying. The sorption isotherms were evaluated at 15, 25 and 35 °C using the dynamic gravimetric method, wherein the isotherm data of the experiment were fit to GAB and BET models. Likewise, the Tg was measured using differential scanning calorimetry (DSC). Thermogravimetric analysis (TGA) was used to determine the mass loss, and the thermal properties (heat capacity, diffusivity and thermal conductivity) were determined using transient flow method. The results demonstrated that the GAB model best fit the adsorption data. The DSC analysis presented a glass transition temperature of 65.35 °C and a loss of volatiles at 178.07 °C. The TGA analysis indicated a considerable mass loss starting at 193 °C, resulting in degradation of the product. The thermal properties demonstrated a heat capacity of 2.45 J/g °C, a thermal conductivity of 0.164 ± 0.001 W/mK and a thermal diffusivity of 8.7x10-8 ± 0.000 m2/s.


2019 ◽  
Vol 14 (1) ◽  
pp. 93 ◽  
Author(s):  
Gentil Andres Collazos-Escobar ◽  
Nelson Gutiérrez-Guzman ◽  
Henry A. Vaquiro Herrera

Specialty coffee is highly differentiated product because of  its sensorial attributes: aroma, body and brand reputation. In specialized markets, these products are highly valued, and sometimes up to six times their commercial value is paid. Thus, it is essential to preserve their freshness. Sorption isotherms are necessary for determining and studying water sorption changes in specialty coffee during storage. This study aimed to determine the adsorption isotherms of specialty ground roasted-coffee at temperatures of 25 °C, 30 °C and 40 °C and water activities between 0.1 and 0.8 using the dynamic dewpoint method (DDI). The experiment sorption data were modeled using 12 different equations with non-linear regression to represent the dependence of the equilibrium moisture content with both water activity and temperature. In addition, the thermodynamic properties were determined with the experiment adsorption data. The results showed that type III isotherms were obtained according to the Brunauer classification, and the Weibull equation satisfactorily modeled the effect of the temperature on the hygroscopic equilibrium in the specialty ground roasted-coffee. The results of thermodynamic analysis showed that the net isosteric heat of adsorption and Gibbs free energy decreased as the equilibrium moisture content increased, indicating the amount of energy released, a strong bond energy between water molecules in the product components and spontaneity in the adsorption process. The entropy of the adsorption increased with the moisture content, leading to product stability conditions during storage. The results were similar to those reported for the roasted and ground coffee of others cultivars.


Sign in / Sign up

Export Citation Format

Share Document