The effect of plastic deformation on mechanical properties of aluminium matrix composites reinforced with 2D crystals

Author(s):  
Jaroslaw Wozniak ◽  
Mateusz Petrus ◽  
Marek Kostecki ◽  
Tomasz Cygan ◽  
Andrzej Olszyna

Abstract In this study, AA6061 matrix composites reinforced with multilayer graphene and MoS2 were analyzed. The composites were prepared by powder metallurgy using the spark plasma sintering and spark plasma texturing methods. Microstructure, physical and mechanical properties were investigated and compared with unreinforced AA6061 sinter and AA6061 sheet plate. The results showed that the application of spark plasma texturing positively influences the relative density and compressive yield strength of AA6061 matrix composites. Moreover, in composites with MoS2, significant differences in compressive yield strength between the centre and the edge of the sintered compacts were noticed. These differences are related to the formation of the MoAl12 phase as a result of the temperature gradient generated in the graphite die during sintering by the spark plasma texturing.

Mechanik ◽  
2018 ◽  
Vol 91 (10) ◽  
pp. 846-849
Author(s):  
Elżbieta Bączek

Metal matrix composites were prepared by hot pressing (HP) and spark plasma sintering (SPS) techniques. Ball-milled ironbase powders were consolidated to near full density by these methods at 900°C. The physical and mechanical properties of the resulting composites were investigated. The specimens were tested for resistance to both 3-body and 2-body abrasion. The composites obtained by HP method (at 900°C/35 MPa) had higher density, hardness and resistance to abrasion than those obtained by SPS method.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 607 ◽  
Author(s):  
Li ◽  
Kashkarov ◽  
Syrtanov ◽  
Sedanova ◽  
Ivashutenko ◽  
...  

Ceramic matrix composites (CMCs) based on silicon carbide (SiC) are promising materials for applications as structural components used under high irradiation flux and high temperature conditions. The addition of SiC fibers (SiCf) may improve both the physical and mechanical properties of CMCs and lead to an increase in their tolerance to failure. This work describes the fabrication and characterization of novel preceramic paper-derived SiCf/SiCp composites fabricated by spark plasma sintering (SPS). The sintering temperature and pressure were 2100 °C and 20–60 MPa, respectively. The content of fibers in the composites was approx. 10 wt.%. The matrix densification and fiber distribution were examined by X-ray computed tomography and scanning electron microscopy. Short processing time avoided the destruction of SiC fibers during SPS. The flexural strength of the fabricated SiCf/SiCp composites at room temperature varies between 300 and 430 MPa depending on the processing parameters and microstructure of the fabricated composites. A quasi-ductile fracture behavior of the fabricated composites was observed.


2014 ◽  
Vol 881-883 ◽  
pp. 923-926
Author(s):  
Xiang Bo Shen ◽  
Zhao Hui Zhang ◽  
Mao Sheng Cao ◽  
Fu Chi Wang

The in-situ synthesized TiB reinforced titanium matrix composites have been prepared by spark plasma sintering technique at 950–1250°C, using mixtures of 10wt% TiB2 and 90wt% Ti powders. The effects of the sintering temperature on the mechanical properties (Vickers microhardness, yield strength and Young`s modulus) of the composites were investigated. SEM was used to analyze the reaction process and the microstructure of the compacts synthesized at different sintering temperatures. The results indicated that the in situ synthesized TiB grow rapidly with increasing sintering temperature. The composite sintered at 1250°C have the highest relative density of 99.2%. However, the composite sintered at 950°C exhibits the best Vickers microhardness of 4.64GPa and yield strength of 989MPa, respectively.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 762 ◽  
Author(s):  
Rub Nawaz Shahid ◽  
Sergio Scudino

Lightweight metal matrix composites are synthesized from elemental powder mixtures of aluminum and magnesium using pressure-assisted reactive sintering. The effect of the reaction between aluminum and magnesium on the microstructure and mechanical properties of the composites due to the formation of β-Al3Mg2 and γ-Al12Mg17 intermetallics is investigated. The formation of the intermetallic compounds progressively consumes aluminum and magnesium and induces strengthening of the composites: the yield and compressive strengths increase with the increase of the content of intermetallic reinforcement at the expense of the plastic deformation. The yield strength of the composites follows the iso-stress model when the data are plotted as a function of the intermetallic content.


JOM ◽  
2020 ◽  
Vol 72 (6) ◽  
pp. 2295-2304
Author(s):  
Mahmood Khan ◽  
Rafi Ud-Din ◽  
Abdul Wadood ◽  
Syed Wilayat Husain ◽  
Shahid Akhtar ◽  
...  

2020 ◽  
Vol 9 (6) ◽  
pp. 716-725
Author(s):  
Guangqi He ◽  
Rongxiu Guo ◽  
Meishuan Li ◽  
Yang Yang ◽  
Linshan Wang ◽  
...  

AbstractShort-carbon-fibers (Csf) reinforced Ti3SiC2 matrix composites (Csf/Ti3SiC2, the Csf content was 0 vol%, 2 vol%, 5 vol%, and 10 vol%) were fabricated by spark plasma sintering (SPS) using Ti3SiC2 powders and Csf as starting materials at 1300 °C. The effects of Csf addition on the phase compositions, microstructures, and mechanical properties (including hardness, flexural strength (σf), and KIC) of Csf/Ti3SiC2 composites were investigated. The Csf, with bi-layered transition layers, i.e., TiC and SiC layers, were homogeneously distributed in the as-prepared Csf/Ti3SiC2 composites. With the increase of Csf content, the KIC of Csf/Ti3SiC2 composites increased, but the σf decreased, and the Vickers hardness decreased initially and then increased steadily when the Csf content was higher than 2 vol%. These changed performances (hardness, σf, and KIC) could be attributed to the introduction of Csf and the formation of stronger interfacial phases.


Sign in / Sign up

Export Citation Format

Share Document