Microstructure and mechanical properties of laser welded titanium alloy and stainless steel joint with composite interlayer

Author(s):  
Yan Zhang ◽  
YiDi Gao ◽  
JianPing Zhou ◽  
DaQian Sun ◽  
HongMei Li

Abstract In this work, TA2/T2 was used as a composite interlayer to prevent the formation of brittle Ti-Fe intermetallics when joining TC4 Ti alloy to 304 stainless steel. The TA2/T2 (commercially pure Ti and Cu) composite interlayer was prepared by explosive welding. The laser was focused on the TC4-TA2 interface, which joined the TC4 and TA2 by fusion welding. At the TC4-TA2 interface, a weld zone was formed due to the mixing of molten TC4 and TA2. The laser was also focused on the T2-304 stainless steel interface, a weld zone was formed due to the mixing of molten T2 and 304 stainless steel. Composite interlayer TA/T2 was used not only to prevent the formation of Ti-Fe intermetallics during welding but also to improve microstructure and properties of the stainless steel–Ti alloy joint. The joint fractured at the TA2/T2 explosive welding interface with a maximum tensile strength of 428 MPa.

Author(s):  
Yan Zhang ◽  
YuanBo Bi ◽  
JianPing Zhou ◽  
DaQian Sun ◽  
HongMei Li

Abstract As two important industrial manufacturing materials, titanium alloys and stainless steel have their own advantages and disadvantages in terms of physical, chemical, and mechanical properties. The field of materials manufacturing has witnessed efforts to develop technical processes that can properly combine these two alloy types, aiming to effectively use their respective advantages. The welding technology for Ti alloy and stainless steel, as a research topic with broad prospects, is comprehensively and deeply analyzed in this review. The current research progress in this field was analyzed from different process perspectives such as fusion welding, brazing, diffusion welding, friction welding, explosive welding and vacuum hot-rolling welding. The results of the review showed that the greatest challenges of fusion welding are low ductility of the material, high residual stress, high cooling rate, and the formation of numerous brittle Ti-Fe intermetallics. By using appropriate intermediate materials between these two materials, the residual stress and brittle intermetallics near the interface of the transition joint can be minimised by solving the thermal expansion mismatch, reducing the bonding temperature and pressure, and suppressing the diffusion of elements such as Ti and Fe.


2019 ◽  
Vol 6 (10) ◽  
pp. 106575
Author(s):  
Bin Wang ◽  
Ming-Yan Jiang ◽  
Ming Xu ◽  
Cheng-Wu Cui ◽  
Jie Wang ◽  
...  

2017 ◽  
Vol 7 ◽  
pp. 529-534 ◽  
Author(s):  
Wenning Shen ◽  
Lajun Feng ◽  
Hui Feng ◽  
Ying Cao ◽  
Lei Liu ◽  
...  

2017 ◽  
Vol 24 (11) ◽  
pp. 1267-1277 ◽  
Author(s):  
Mohammadreza Khanzadeh Gharah Shiran ◽  
Gholamreza Khalaj ◽  
Hesam Pouraliakbar ◽  
Mohammadreza Jandaghi ◽  
Hamid Bakhtiari ◽  
...  

Author(s):  
Wei Tang ◽  
Maxim Gussev ◽  
Zhili Feng ◽  
Brian Gibson ◽  
Roger Miller ◽  
...  

Abstract The mitigation of helium induced cracking in the heat affected zone (HAZ), a transition metallurgical zone between the weld zone and base metal, during repair welding is a great challenge in nuclear industry. Successful traditional fusion welding repairs are limited to metals with a maximum of a couple of atomic parts per million (appm) helium, and structural materials helium levels in operating nuclear power plants are generally exceed a couple of appm after years of operations. Therefore, fusion welding is very limited in nuclear power plants structural materials repairing. Friction stir welding (FSW) is a solid-state joining technology that reduces the drivers (temperature and tensile residual stress) for helium-induced cracking. This paper will detail initial procedural development of FSW weld trials on irradiated 304L stainless steel (304L SS) coupons utilizing a unique welding facility located at one of Oak Ridge National Laboratory’s hot cell facilities. The successful early results of FSW of an irradiated 304L SS coupon containing high helium are discussed. Helium induced cracking was not observed by scanning electron microscopy in the friction stir weld zone and the metallurgical zones between the weld zone and base metal, i.e. thermal mechanical affected zone (TMAZ) and HAZ. Characterization of the weld, TMAZ and HAZ regions are detailed in this paper.


2021 ◽  
Vol 882 ◽  
pp. 28-34
Author(s):  
Zeynel Guler ◽  
Guney Guven Yapici

Constrained groove pressing (CGP), which is a severe plastic deformation technique, has been implemented on AISI 304 and commercially pure zinc samples in the present work. Four CGP passes were successfully applied to both materials providing a remarkable improvement in both strength and hardness values, despite reduced ductility. Average grain size values were diminished by around 45% for 304 stainless steel and 47% for commercially pure zinc. The highest levels of strengthening due to severe deformation were displayed after the initial passes for both materials. CGP was shown to be a viable method for strengthening based on deformation processing, whereby similar trends in microstructure and mechanical behavior were observed for both crystal structures.


Sign in / Sign up

Export Citation Format

Share Document