Multiwave interaction solutions for a (3 + 1)-dimensional B-type Kadomtsev–Petviashvili equation in fluid dynamics

Author(s):  
Wenying Cui ◽  
Yinping Liu ◽  
Zhibin Li

Abstract In this paper, a (3 + 1)-dimensional B-type Kadomtsev–Petviashvili (BKP) equation is investigated and its various new interaction solutions among solitons, rational waves and periodic waves are obtained by the direct algebraic method, together with the inheritance solving technique. The results are fantastic interaction phenomena, and are shown by figures. Meanwhile, any higher order interaction solutions among solitons, breathers, and lump waves are constructed by an N-soliton decomposition algorithm developed by us. These innovative results greatly enrich the structure of the solutions of this equation.

2020 ◽  
Vol 34 (35) ◽  
pp. 2050405
Author(s):  
Wenying Cui ◽  
Wei Li ◽  
Yinping Liu

In this paper, for the (3+1)-dimensional extended Jimbo–Miwa equation, by the direct algebraic method, together with the inheritance solving strategy, we construct its interaction solutions among solitons, rational waves, and periodic waves. Meanwhile, we construct its interaction solutions among solitons, breathers, and lumps of any higher orders by an [Formula: see text]-soliton decomposition algorithm, together with the parameters conjugated assignment and long-wave limit techniques. The highlight of the paper is that by applying new algorithms and new techniques, we obtained different types of new multiwave interaction solutions for the (3+1)-dimensional extended Jimbo–Miwa equation.


Author(s):  
Miaomiao Wang ◽  
Zequn Qi ◽  
Junchao Chen ◽  
Biao Li

The ([Formula: see text])-dimensional B-type Kadomtsev–Petviashvili (BKP) equation is utilized to depict weakly dispersive waves propagating in the fluid mechanics. According to [Formula: see text]-soliton solutions, resonance Y-shaped soliton and its interaction with other local wave solutions of the ([Formula: see text])-dimensional BKP equation are derived by introducing the constraint conditions. These types of hybrid soliton solutions exhibit the complex interaction phenomenon among resonance Y-shaped solitons, breather waves, line solitary waves and high-order lump waves. The dynamic behaviors of such interaction solutions are analyzed and illustrated.


2017 ◽  
Vol 72 (10) ◽  
pp. 955-961 ◽  
Author(s):  
Iftikhar Ahmed

AbstractIn this work, we investigate dimensionally reduced generalised Kadomtsev-Petviashvili equation, which can describe many nonlinear phenomena in fluid dynamics. Based on the bilinear formalism, direct Maple symbolic computations are used with an ansätz function to construct three classes of interaction solutions between lump and line solitons. Furthermore, the dynamics of interaction phenomena is explained with 3D plots and 2D contour plots. For the first class of interaction solutions, lump appeared at t=0, and there was a normal interaction between lump and line solitons at t=1, 2, 5, and 10. For the second class of interaction solutions, lump appeared from one side of line soliton at t=0, but it started moving downward at t=1, 2, and 5. Finally, at t=10, this lump was completely swallowed by other side. By contrast, for the third class of interaction solutions, lump appeared from one side of line soliton at t=0, but it started moving upward at t=1, 2, and 5. Finally, at t=10, this lump was completely swallowed by other side. Furthermore, interaction solutions between lump solutions and kink wave are also investigated. These results might be helpful to understand the propagation processes for nonlinear waves in fluid mechanics.


2015 ◽  
Vol 70 (7) ◽  
pp. 539-544 ◽  
Author(s):  
Bo Ren ◽  
Ji Lin

AbstractThe consistent tanh expansion (CTE) method is applied to the cubic generalised Kadomtsev–Petviashvili (CGKP) equation. The interaction solutions between one kink soliton and the cnoidal periodic waves are explicitly given. Some special concrete interaction solutions in terms of the Jacobi elliptic functions and the third type of incomplete elliptic integral are discussed both in analytical and graphical ways.


Author(s):  
Na Liu ◽  
Xinhua Tang ◽  
Weiwei Zhang

This paper is devoted to obtaining the multi-soliton solutions, high-order breather solutions and high-order rational solutions of the (3+1)-dimensional B-type Kadomtsev–Petviashvili (BKP) equation by applying the Hirota bilinear method and the long-wave limit approach. Moreover, the interaction solutions are constructed by choosing appropriate value of parameters, which consist of four waves for lumps, breathers, rouges and solitons. Some dynamical characteristics for the obtained exact solutions are illustrated using figures.


2006 ◽  
Vol 18 (10) ◽  
pp. 2414-2464 ◽  
Author(s):  
Peter A. Appleby ◽  
Terry Elliott

In earlier work we presented a stochastic model of spike-timing-dependent plasticity (STDP) in which STDP emerges only at the level of temporal or spatial synaptic ensembles. We derived the two-spike interaction function from this model and showed that it exhibits an STDP-like form. Here, we extend this work by examining the general n-spike interaction functions that may be derived from the model. A comparison between the two-spike interaction function and the higher-order interaction functions reveals profound differences. In particular, we show that the two-spike interaction function cannot support stable, competitive synaptic plasticity, such as that seen during neuronal development, without including modifications designed specifically to stabilize its behavior. In contrast, we show that all the higher-order interaction functions exhibit a fixed-point structure consistent with the presence of competitive synaptic dynamics. This difference originates in the unification of our proposed “switch” mechanism for synaptic plasticity, coupling synaptic depression and synaptic potentiation processes together. While three or more spikes are required to probe this coupling, two spikes can never do so. We conclude that this coupling is critical to the presence of competitive dynamics and that multispike interactions are therefore vital to understanding synaptic competition.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qing Yao ◽  
Bingsheng Chen ◽  
Tim S. Evans ◽  
Kim Christensen

AbstractWe study the evolution of networks through ‘triplets’—three-node graphlets. We develop a method to compute a transition matrix to describe the evolution of triplets in temporal networks. To identify the importance of higher-order interactions in the evolution of networks, we compare both artificial and real-world data to a model based on pairwise interactions only. The significant differences between the computed matrix and the calculated matrix from the fitted parameters demonstrate that non-pairwise interactions exist for various real-world systems in space and time, such as our data sets. Furthermore, this also reveals that different patterns of higher-order interaction are involved in different real-world situations. To test our approach, we then use these transition matrices as the basis of a link prediction algorithm. We investigate our algorithm’s performance on four temporal networks, comparing our approach against ten other link prediction methods. Our results show that higher-order interactions in both space and time play a crucial role in the evolution of networks as we find our method, along with two other methods based on non-local interactions, give the best overall performance. The results also confirm the concept that the higher-order interaction patterns, i.e., triplet dynamics, can help us understand and predict the evolution of different real-world systems.


Sign in / Sign up

Export Citation Format

Share Document