scholarly journals Field assessment of surge and continuous furrow irrigation methods in relation to tillage systems

2017 ◽  
Vol 31 (2) ◽  
pp. 219-230 ◽  
Author(s):  
Mohamed A. Mattar ◽  
Mohamed A. El-Saadawy ◽  
Mamdouh A. Helmy ◽  
Hussien M. Sorour

Abstract Surge flow irrigation is one of the irrigation techniques for controlling furrow irrigation. The aim of this study was to investigate the effect of surge furrow irrigation on water management compared with continuous irrigation for different tillage systems. An experimental field was treated with various tillage systems (mouldboard plough, chisel plough and rotary plough) and water irrigation application methods (continuous flow, control) in which irrigation water was applied continuously, and surge flow (3-surges, 4-surges and 5-surges) in which irrigation water was applied intermittently until it reached the tail end of the furrow. The results showed that water savings obtained using the surge technique were 18.58, 11.84 and 18.93% lower water use than with continuous flow, for the mouldboard, chisel and rotary ploughs, respectively. The 3-surges treatment with the rotary plough reduced the advance time by 25.36% from that for continuous irrigation. The 4-surges treatment with the mouldboard plough had the highest water application efficiency (88.13%). The 3-surges treatment with the rotary plough had the highest distribution uniformity (85.01%). The rotary plough did not cause as much soil aeration around the root system as the other tillage systems. The field research provided information about surge flow, aimed at reducing advance times and increasing irrigation efficiency.

2021 ◽  
Vol 17 (AAEBSSD) ◽  
pp. 340-347
Author(s):  
Sumandeep Kaur ◽  
Arun Kaushal ◽  
Pramodkumar Shelke

Surge irrigation is the intermittent application of water to surface irrigated furrows or borders in a series of relatively short on and off time periods during the irrigation which may be between 20 minutes to two hours. In this technique, water is usually applied intermittently rather than with a continuous stream, as in conventional surface irrigation..Water productivity and water saving of six crops viz. wheat, cotton, maize, capsicum, onion and fennel under surge irrigation were compared with traditional method for the crops grown in different environmental conditions at different location of the world.It is concluded that surge flow irrigation performs better than continuous flow irrigation in terms of water saving and yield resulting in enhancement of water productivity. In case of wheat crop, surge irrigation saved and decreased irrigation water by 27, 33.4 and 37.4 % and increased yield by 15.1, 17.7 and 12.7 % under slope of 0.0, 0.1 and 0.2 % respectively compared with continuous flow irrigation for the same discharge. It had the maximum water use efficiency values of 1.39, 1.56 and 1.59 kg/m3 for surge flow irrigation under slopes of 0.0, 0.1 and 0.2 %, respectively.Surge irrigation system for maize obtained the highest value of WUE (1.63 kg/m3) with 40 m furrow length under 12.24 l/min inflow rate, while the lowest value of WUE obtained by continuous irrigation system, with 20 m furrow length under 44.4 l/min inflow rate (1.05 kg/m3). It can be applied by farmers in areas where irrigation water is limiting factor in crop production and farmers cannot afford costly micro-irrigation system.


2019 ◽  
Vol 40 (6Supl2) ◽  
pp. 3007
Author(s):  
Allah Wasaya ◽  
Muhammad Tahir ◽  
Tauqeer Ahmad Yasir ◽  
Muhammad Mansoor Javed ◽  
Muhammad Ali Raza ◽  
...  

Nitrogen (N), being mobile in soil is exposed to various losses owing to unwise use of nitrogen fertilizer, and conventional soil and crop management practices which can be minimized by temporal nitrogen application and different tillage practices. This study was conducted to elucidate the effect of different tillage systems and nitrogen timings on growth, stay green and grain quality in maize. Three tillage systems viz. T1: tillage with cultivator, T2: mouldboard plough + 2-cultivations, T3: chisel plough + 2-cultivations; and five nitrogen timings viz. N1: whole at sowing, N2: ½ at sowing+½ at V5 (5-leaf stage), N3: ½ at sowing+½ at tasseling, N4: ½ at V5+½ at tasseling, N5: 1/3 at sowing+1/3 at V5+1/3 at tasseling). Tillage systems and nitrogen application had significant effect on leaf area per plant, specific leaf area and leaf area ratio. Tillage systems had non-significant effect on stay green and grain quality parameters except for oil contents. However, nitrogen timings had significant effect on chlorophyll a, b and total contents as well as grain quality parameters. The higher a, b and total chlorophyll contents were noted with three splits i.e. 1/3 at sowing+1/3 at V5+1/3 at tasseling compared with other treatments. The results suggest to grow maize by preparing the field through chisel plough and applying N in three splits to improve its growth, chlorophyll contents and grain quality.


2020 ◽  
Vol 6 ◽  
pp. 127-135
Author(s):  
Ekubay Tesfay Gebreigziabher

Irrigation water availability is diminishing in many areas of the Ethiopian regions, which require many irrigators to consider deficit-irrigation strategy. This study investigated the response of maize (Zea mays L.) to moisture deficit under conventional, alternate and fixed furrow irrigation systems combined with three irrigation amounts over a two years period. The field experiment was conducted at Selekleka Agricultural Research Farm of Shire-Maitsebri Agricultural Research Center. A randomized complete block design (RCBD) with three replications was used. Irrigation depth was monitored using a calibrated 2-inch throat Parshall flume. The effects of the treatments were evaluated in terms of grain yield, dry above-ground biomass, plant height, cob length and water use efficiency. The two years combined result indicated that  net irrigation water applied in alternate furrow irrigation with full amount irrigation depth (100% ETc AFI) treatments was half (3773.5 m3/ha) than that of applied to the conventional furrow with full irrigation amount (CFI with 100% ETc) treatments (7546.9 m3/ha). Despite the very significant reduction in irrigation water used with alternate furrow irrigation (AFI), there was insignificant grain yield reduction in maize(8.31%) as compared to control treatment (CFI with100% ETc). In addition, we also obtained significantly (p<0.001) higher crop water use efficiency of 1.889 kg/m3 in alternate furrow irrigation (AFI), than that was obtained as 0.988 kg/m3 in conventional furrow irrigation (CFI). In view of the results, alternate furrow irrigation method (AFI) is taken as promising for conservation of water (3773.5 m3/ha), time (23:22'50" hours/ha), labor (217.36 USD/ha) and fuel (303.79 USD/ha) for users diverting water from the source to their fields using pump without significant trade-off in yield.


2013 ◽  
Author(s):  
Roberto Vieira Pordeus ◽  
Carlos Alberto Vieira de Azevedo ◽  
Luiz Antonio Dantas ◽  
Vera Lucia Antunes de Lima ◽  
José Dantas Neto ◽  
...  

2006 ◽  
Vol 20 (1) ◽  
pp. 249-254 ◽  
Author(s):  
Ronald J. Levy ◽  
Jason A. Bond ◽  
Eric P. Webster ◽  
James L. Griffin ◽  
Steven D. Linscombe

Field research was conducted for 3 yr to evaluate crop response and weed control under conventional and reduced tillage in drill- and water-seeded imidazolinone-tolerant (IT) rice culture. Imazethapyr was applied at 70 g ai/ha PRE followed by (fb) imazethapyr at 70 g/ha applied POST to three- to four-leaf rice or at 105 g/ha PRE fb 70 g/ha POST. In both conventional and reduced tillage systems, imazethapyr applied PRE fb POST at 70 g ai/ha controlled red rice, barnyardgrass, Amazon sprangletop, and rice flatsedge 87 to 99% 35 d after POST treatment (DAT). At 35 DAT, Indian jointvetch control with sequential applications of imazethapyr was as high as 70% in water-seeded rice but no more than 54% in drill-seeded rice. Tillage, seeding method, and imazethapyr rate had no effect on days to 50% heading, seeds per panicle, seed weight per panicle, or percentage of seed harvest. However, a reduction of 27% in days to 50% heading, 80% in seeds per panicle, 84% in seed weight per panicle, and 100% in percentage seed harvest index occurred when imazethapyr was not applied because of weed interference. Culm number was reduced 28%, and culm weight 32% under reduced tillage compared with conventional tillage. With sequential applications of imazethapyr at 70 g/ha, rice yield was 63% greater when rice was water-seeded compared with drill-seeded. No differences in tillage systems for weed control, days to 50% heading, seed number, seed weight per panicle, percent seed, panicle height, lodging, or yield were observed. Results of these experiments demonstrate imazethapyr will effectively control weeds in both water- and drill-seeded rice and that reduced tillage can be used without negatively affecting rice production.


Weed Science ◽  
1999 ◽  
Vol 47 (5) ◽  
pp. 563-570 ◽  
Author(s):  
Lizabeth A. B. Stahl ◽  
Gregg A. Johnson ◽  
Ronald L. Wyse ◽  
Douglas D. Buhler ◽  
Jeffrey L. Gunsolus

Weed management can be a significant challenge in cropping systems, partly because the effects of tillage systems on weed seedbank and seedling population dynamics are not well understood. Field research was conducted from 1994 to 1996 in established tillage plots consisting of moldboard plow (MP), chisel plow (CP), and no-tillage (NT). The objectives were to determine the effects of long-term tillage systems on the timing and duration ofSetariaspp. emergence and percentage cumulative emergence from the soil seedbank and to investigate the effect of tillage onSetariaspp. density and seed production following glyphosate application atSetariaspp. heights of 5, 10, and 15 cm. NT contained a greater number ofSetariaspp. seed in the 0- to 1-, 1- to 3-, and 3- to 6-cm depths than MP or CP systems. There was little difference between the three tillage systems at depths greater than 6 cm.Setariaspp. emergence was greater in NT than in MP or CP in 1994 and 1996 and greater than in MP in 1995. There was a substantial increase inSetariaspp. emergence in NT between 3 and 4 weeks after planting (WAP) in 1994 and between 5 and 6 WAP in 1995 and 1996. Significant emergence did not occur past 5 to 6 WAP in 1994 and 1995 but continued over a longer period of time in 1996.Setariaspp. plants consistently reached targeted herbicide application heights 4 to 9 d earlier in NT than in CP and MP. In 1994, finalSetariaspp. density was greater in NT compared to CP and MP at the 5- and 10-cm herbicide application timings. When glyphosate was applied to 15-cm-tallSetaria, very few weeds were present following application across all tillage systems. In 1995, NT resulted in greaterSetariaspp. density than MP or CP across all application timings. There was no difference in finalSetariaspp. density between MP and CP across all glyphosate timings in 1994 and 1995. Seed production was negligible in MP and CP, regardless of glyphosate timing. In NT, however, significant seed production occurred, especially with early application. Results indicate that the effectiveness of nonresidual herbicides forSetaria faberiHerrm. control is influenced by tillage system and the timing of application.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Kassu Tadesse Kassaye ◽  
Wubengeda Admasu Yilma ◽  
Mehiret Hone Fisha ◽  
Dawit Habte Haile

The benefits of water-saving techniques such as alternate furrow and deficit irrigations need to be explored to ensure food security for the ever-increasing population within the context of declining availability of irrigation water. In this regard, field experiments were conducted for 2 consecutive dry seasons in the semiarid region of southwestern Ethiopia and investigated the influence of alternate furrow irrigation method with different irrigation levels on the yield, yield components, water use efficiency, and profitability of potato production. The experiment comprised of 3 irrigation methods: (i) conventional furrow irrigation (CFI), (ii) alternate furrow irrigation (AFI), and (iii) fixed furrow irrigation (FFI) combined factorially with 3 irrigation regimes: (i) 100%, (ii) 75%, and (iii) 50% of the potato water requirement (ETC). The experiment was laid out in randomized complete block design replicated thrice. Results revealed that seasonal irrigation water applied in alternate furrows was nearly half (170 mm) of the amount supplied in every furrow (331 mm). Despite the half reduction in the total amount of water, tuber (35.68 t ha−1) and total biomass (44.37 t ha−1) yields of potato in AFI did not significantly differ from CFI (34.84 and 45.35 t ha−1, respectively). Thus, AFI improved WUE by 49% compared to CFI. Irrigating potato using 75% of ETC produced tuber yield of 35.01 t ha−1, which was equivalent with 100% of ETC (35.18 t ha−1). Irrigating alternate furrows using 25% less ETC provided the highest net return of US$74.72 for every unit investment on labor for irrigating potato. In conclusion, irrigating alternate furrows using up to 25% less ETC saved water, provided comparable yield, and enhanced WUE and economic benefit. Therefore, farmers and experts are recommended to make change to AFI with 25% deficit irrigation in the study area and other regions with limited water for potato production to improve economic, environmental, and social performance of their irrigated systems.


2003 ◽  
Author(s):  
Roberto Vieira Pordeus ◽  
Carlos Alberto Vieira de Azevedo ◽  
Vera Lúcia Antunes de Lima ◽  
José Dantas Neto ◽  
Márcia Rejane de Queiroz Almeida Azevedo

1994 ◽  
Vol 34 (3) ◽  
pp. 401 ◽  
Author(s):  
RR Gault ◽  
AL Bernardi ◽  
JA Thompson ◽  
JA Andrews ◽  
LW Banks ◽  
...  

Water-run inoculation is a novel means of inoculating crop legumes with species of Rhizobium or Bradyrhizobiunz. Inoculant suspended in irrigation water is delivered into the seedbed. This procedure may be apt for situations when a farmer has limited time to sow a large area and more conventional and timeconsuming means of inoculation may create a bottleneck during sowing. Field experiments with water-run inoculation of irrigated soybeans were conducted at 2 sites using furrow or flood irrigation. With furrow irrigation immediately after sowing, rhizobia-laden water had to infiltrate the soil laterally a distance of about 18 cm to reach the seed sown in single rows on hills (parallel ridges). With flood irrigation before sowing, water needed to percolate vertically only 5 cm to sowing depth. A peat inoculant of B. japonicum remained uniformly in suspension during flow of irrigation water over periods of 45 min and distances of 80 m from the point where the inoculant was introduced. With furrow irrigation on a poorly structured red brown earth, water-run inoculation applied at the normal (commercially recommended) rate did not initiate a satisfactory soybean symbiosis and was inferior to the more conventional methods, seed coat and seedbed inoculation. Rhizobial colonisation of seedling rhizospheres was limited, nodulation was sparse, and low numbers of B. japonicum re-established in the soil after harvest. Symbiosis was improved by higher rates of inoculation and was particularly enhanced in an area where the irrigation water ponded for 3-4 h allowing more time for the rhizobia-laden water to percolate the soil. With flood irrigation on a grey clay, an approximately normal rate of water-run inoculation induced an effective symbiosis especially when compared with lower rates of inoculation. Substantial populations of rhizobia developed in soybean rhizospheres, plant growth and nitrogen (N) content were enhanced, and higher levels of N2 fixation led to increased levels of N in the seed. We conclude that water-run inoculation is not an appropriate means of legume inoculation in furrow-irrigated systems on poorly structured soils but it may be a practical option for inoculation of crop legumes grown under flood irrigation.


Sign in / Sign up

Export Citation Format

Share Document