scholarly journals Design of State Rail and Bus Transportation Scheme with Bi-Level Optimization Model

2017 ◽  
Vol 15 (4) ◽  
pp. 2-9 ◽  
Author(s):  
K. Pavlova ◽  
T. Stoilov

Abstract The increase of the rail public transportations is searched in directions for redistribution of the passenger travels between rail and bus transportation. The rail transport benefits by increasing it schedule for places where the transportation capacities on appropriate directions is not achieved. A mathematical model has been derived to assess the potential of the rail passenger transport to increase his capacity and efficiency. This potential has been evaluate in comparison with the competition of the bus transportation. A specific transportation route has been chosen from Sofia to Varna and the potential for increase of the rail transport has been evaluated. The mathematical model uses bi-level optimization problem, related to the evaluation of a maximal flow in a transportation network.

2017 ◽  
Vol 17 (3) ◽  
pp. 75-91 ◽  
Author(s):  
Kristina Pavlova ◽  
Todor Stoilov ◽  
Krasimira Stoilova

Abstract The increase of the utilization of public rail transportations is searched in directions for redistribution of the passenger travels between rail and bus transportation. The rail transport benefits by redistribution of the transportation flows on paths, predominantly supported by rails. The redistribution of the transportation is formalized by bi-level optimization problem. The upper level optimization estimates the maximal flow, which can be transported through a transportation network, supported both by bus and rail transports. The lower level optimization gives priority to the rail transport by decreasing the costs of flow distribution, using rail transport. This bi-level optimization problem was applied for the case of optimization of the rail exploitation in Bulgaria, defining priorities in transportation of the National transport scheme.


1984 ◽  
Vol 6 (2) ◽  
pp. 117-123 ◽  
Author(s):  
H. Schaeben

The concept of conditional ghost correction is introduced into the vector method of quantitative texture analysis. The mathematical model actually chosen here reduces the texture problem to one of quadratic programming. Thus, a well defined optimization problem has to be solved, the singular system of linear equations governing the correspondence between pole and orientation distribution being reduced to a set of equality constraints of the restated texture problem. This new mathematical approach in terms of the vector method reveals the modeling character of the solution of the texture problem provided by the vector method completely.


2017 ◽  
Vol 7 (1) ◽  
pp. 137-150
Author(s):  
Агапов ◽  
Aleksandr Agapov

For the first time the mathematical model of task optimization for this scheme of cutting logs, including the objective function and six equations of connection. The article discusses Pythagorean area of the logs. Therefore, the target function is represented as the sum of the cross-sectional areas of edging boards. Equation of the relationship represents the relationship of the diameter of the logs in the vertex end with the size of the resulting edging boards. This relationship is described through the use of the Pythagorean Theorem. Such a representation of the mathematical model of optimization task is considered a classic one. However, the solution of this mathematical model by the classic method is proved to be problematic. For the solution of the mathematical model we used the method of Lagrange multipliers. Solution algorithm to determine the optimal dimensions of the beams and side edging boards taking into account the width of cut is suggested. Using a numerical method, optimal dimensions of the beams and planks are determined, in which the objective function takes the maximum value. It turned out that with the increase of the width of the cut, thickness of the beam increases and the dimensions of the side edging boards reduce. Dimensions of the extreme side planks to increase the width of cut is reduced to a greater extent than the side boards, which are located closer to the center of the log. The algorithm for solving the optimization problem is recommended to use for calculation and preparation of sawing schedule in the design and operation of sawmill lines for timber production. When using the proposed algorithm for solving the optimization problem the output of lumber can be increased to 3-5 %.


2010 ◽  
Vol 171-172 ◽  
pp. 205-210
Author(s):  
Tong Zhao ◽  
Hou Ming Fan ◽  
Gui Lin Wang

In the world today, science and technology in natural disasters forecasting is changing with each passing day and is built up to a rather high level. But local, territorial, even just national or worldwide scope natural disasters have also posed a grave menace to human well-being and development. Therefore, researching on optimizing problem of vehicle routing for emergent relief supplies of multi-reserves, it is vital significant to quickly send relief supplies to the sufferers after sudden natural disasters. Then, we draw out the mathematical model and solve the problem reasonably based on the improved ant colony algorithm, at last, we obtain the satisfy results through an empirical exemple.


2013 ◽  
Vol 732-733 ◽  
pp. 402-406
Author(s):  
Duan Yi Wang

The weight minimum and drive efficiency maxima1 of screw conveyor were considered as double optimizing objects in this paper. The mathematical model of the screw conveyor has been established based on the theory of the machine design, and the genetic algorithm was adopted to solving the multi-objective optimization problem. The results show that the mass of spiral shaft reduces 13.6 percent, and the drive efficiency increases 6.4 percent because of the optimal design based on genetic algorithm. The genetic algorithm application on the screw conveyor optimized design can provided the basis for designing the screw conveyor.


2012 ◽  
Vol 516-517 ◽  
pp. 1429-1432
Author(s):  
Yang Liu ◽  
Xu Liu ◽  
Feng Xian Cui ◽  
Liang Gao

Abstract. Transmission planning is a complex optimization problem with multiple deciding variables and restrictions. The mathematical model is non-linear, discrete, multi-objective and dynamic. It becomes complicated as the system grows. So the algorithm adopted affects the results of planning directly. In this paper, a fast non-dominated sorting genetic algorithm (NSGA-II) is employed. The results indicate that NSGA-II has some advantages compared to the traditional genetic algorithms. In transmission planning, NSGA-II is feasible, flexible and effective.


2015 ◽  
Vol 15 (4) ◽  
pp. 5-21 ◽  
Author(s):  
Piotr Alawdin ◽  
George Bulanov

abstract In the paper the mathematical model of the optimization problem of limit and shakedown analysis for composite plane frames, containing elastic-plastic and brittle elements under low-cyclic loading, is proposed. It is assumed that the load varies randomly within the specified domain, and limited plastic redistribution of forces in such structures occurs. An example of the shakedown analyses of the composite frame is given.


2014 ◽  
Vol 32 (4) ◽  
pp. 73-80
Author(s):  
Kamil Popiela ◽  
Mariusz Wasiak

This article presents a mathematical formulation of the optimization problem of loading unit formation taking into account the mass of packaging units. Proposed model can be applied to optimize the arrangement of non-uniform cubical loading units in loading spaces. The model ensures possibility of defining various dimensions, masses, resistances of particular packaging units and their vertical axis rotation. Within the constraints of formulating optimization problem, taking into account masses and resistances ensures that all packaging units will rest on a pallet or on other packaging units, and the surface of contact between loading units guarantees stability of units arranged in subsequent layers. The mathematical model was verified. The paper provides an appropriate calculation example.


2015 ◽  
Vol 8 (2) ◽  
pp. 63-67
Author(s):  
Сушков ◽  
Sergey Sushkov ◽  
Бурмистрова ◽  
Olga Burmistrova

In the article the mathematical model of the optimal distribution of traffic between the various modes of transport. The model of the distribution of the requirements of traffic by mode of transport, the optimal cost function at the railway timber transportation option and function of the optimal scheme of cargo flows, taking into account interoperability timber. The solution of these tasks to determine the scope of rational road and rail transport under various conditions.


Sign in / Sign up

Export Citation Format

Share Document