An insight on safety, efficacy, and molecular docking study reports of N-acetylcysteine and its compound formulations

Author(s):  
Laiba Rind ◽  
Mohammad Ahmad ◽  
Mohammad Irfan Khan ◽  
Badruddeen ◽  
Juber Akhtar ◽  
...  

Abstract N-acetylcysteine (NAC) is considered as the body’s major antioxidant molecules with diverse biological properties. In this review, the pharmacokinetics, safety and efficacy report on both the preclinical and clinical summary of NAC is discussed. Both in vitro and in vivo preclinical studies along with the clinical data have shown that NAC has enormous biological properties. NAC is used in the treatment of acetaminophen poisoning, diabetic nephropathy, Alzheimer’s disease, schizophrenia, and ulcerative colitis, etc. Numerous analytical techniques, for instance, UPLC, LC-MS, HPLC, RP-IPC are primarily employed for the estimation of NAC in different single and fixed-dose combinations. The molecular docking studies on NAC demonstrate the binding within Sudlow’s site-I hydrogen bonds and formation of NAC and BSA complexes. Various hydrophobic and hydrophilic amino acids generally exist in making contact with NAC as NAC-BSA complexes. Docking studies of NAC with the active site of the urease exposed an O-coordinated bond through nickel 3002 and a hydrogen bond through His-138. NAC and its analogs also made the allosteric pockets that helped to describe almost all favorable pose for the chaperone in a complex through the protein. Thus, we intended to highlight the several health benefits of this antioxidant compound and applications in pharmaceutical product development.

2020 ◽  
Author(s):  
sabri ahmed cherrak ◽  
merzouk hafida ◽  
mokhtari soulimane nassima

A novel (COVID-19) responsible of acute respiratory infection closely related to SARS-CoV has recently emerged. So far there is no consensus for drug treatment to stop the spread of the virus. Discovery of a drug that would limit the virus expansion is one of the biggest challenges faced by the humanity in the last decades. In this perspective, testing existing drugs as inhibitors of the main COVID-19 protease is a good approach.Among natural phenolic compounds found in plants, fruit, and vegetables; flavonoids are the most abundant. Flavonoids, especially in their glycosylated forms, display a number of physiological activities, which makes them interesting to investigate as antiviral molecules.The flavonoids chemical structures were downloaded from PubChem and protease structure 6lu7 was from the Protein Data Bank site. Molecular docking study was performed using AutoDock Vina. Among the tested molecules Quercetin-3-O-rhamnoside showed the highest binding affinity (-9,7 kcal/mol). Docking studies showed that glycosylated flavonoids are good inhibitors for the covid-19 protease and could be further investigated by in vitro and in vivo experiments for further validation.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 208
Author(s):  
Ahlam Elwekeel ◽  
Dalia El Amir ◽  
Enas I. A. Mohamed ◽  
Elham Amin ◽  
Marwa H. A. Hassan ◽  
...  

The current study accentuates the significance of performing the multiplex approach of LC-HRESIMS, biological activity, and docking studies in drug discovery, taking into consideration a review of the literature. In this regard, the investigation of antioxidant and cytotoxic activities of Trigonella stellata collected from the Egyptian desert revealed a significant antioxidant capacity using DPPH with IC50 = 656.9 µg/mL and a moderate cytotoxicity against HepG2, MCF7, and CACO2, with IC50 values of 53.3, 48.3, and 55.8 µg/mL, respectively. The evaluation of total phenolic and flavonoid contents resulted in 32.8 mg GAE/g calculated as gallic acid equivalent and 5.6 mg RE/g calculated as rutin equivalent, respectively. Chemical profiling of T. stellata extract, using LC-HRESIMS analysis, revealed the presence of 15 metabolites, among which eleven compounds were detected for the first time in this species. Interestingly, in vitro testing of the antidiabetic activity of the alcoholic extract noted an α-glucosidase enzyme inhibitory activity (IC50 = 559.4 µg/mL) better than that of the standard Acarbose (IC50 = 799.9 µg/mL), in addition to a moderate inhibition of the α-amylase enzyme (IC50 = 0.77 µg/mL) compared to Acarbose (IC50 = 0.21 µg/mL). α-Glucosidase inhibition was also virtualized by binding interactions through the molecular docking study, presenting a high binding activity of six flavonoid glycosides, as well as the diterpenoid compound graecumoside A and the alkaloid fenugreekine. Taken together, the conglomeration of LC-HRESIMS, antidiabetic activity, and molecular docking studies shed light on T. stellata as a promising antidiabetic herb.


2020 ◽  
Vol 32 (6) ◽  
pp. 1482-1490
Author(s):  
Manju Mathew ◽  
Raja Chinnamanayakar ◽  
Ezhilarasi Muthuvel Ramanathan

A series of 1-(5-(5-(4-chlorophenyl)furan-2-yl)-4,5-dihyropyrazol-1-yl ethanone (5a-h) was synthesized through E-(3-(5-(4-chloro-phenyl)furan-2-yl)-1-phenylprop-2-en-1-one (3a-h) with hydrazine monohydrate and sodium acetate. Totally, eight compounds were synthesized and their structures were elucidated by infrared, 1H & 13C NMR, elemental analysis, antimicrobial studies, in silico molecular docking studies and also in silico ADME prediction. Antimicrobial studies of the synthesized compounds showed good to moderate activity against the all the stains compared with standard drugs. in silico Molecular docking study was carried out using bacterial protein and BC protein. Synthesized compounds (5a-h) showed good docking score compared with ciprofloxacin. Antimicrobial study was carried out for 4-chlorophenyl furfuran pyrazole derivatives (5a-h). The results of assessment of toxicities, drug likeness and drug score profiles of compounds (5a-j) are promising


2020 ◽  
Author(s):  
pooja singh ◽  
Angkita Sharma ◽  
Shoma Paul Nandi

<p>Within the span of a few months, the severe acute respiratory syndrome coronavirus, COVID-19 (SARS-CoV-2), has proven to be a pandemic, affecting the world at an exponential rate. It is extremely pathogenic and causes communicable infection in humans. Viral infection causes difficulties in breathing, sore throat, cough, high fever, muscle pain, diarrhea, dyspnea, and may lead to death. Finding a proper drug and vaccines against this virus is the need of the hour. The RNA genome of COVID19 codes for the main protease M<sup>pro</sup>, which is required for viral multiplication. To identify possible antiviral drug(s), we performed molecular docking studies. Our screen identified ten biomolecules naturally present in <i>Aspergillus flavus</i> and <i>Aspergillus oryzae</i> fungi. These molecules include Aspirochlorine, Aflatoxin B1, Alpha-Cyclopiazonic acid, Sporogen, Asperfuran, Aspergillomarasmine A, Maltoryzine, Kojic acid, Aflatrem and Ethyl 3-nitropropionic acid, arranged in the descending order of their docking score. Aspirochlorine exhibited the docking score of – 7.18 Kcal/mole, higher than presently used drug Chloroquine (-6.2930522 Kcal/mol) and out of ten ligands studied four has docking score higher than chloroquine. These natural bioactive compounds could be tested for their ability to inhibit viral growth <i>in- vitro</i> and <i>in-vivo</i>.<b> </b></p>


Biomedicines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 68 ◽  
Author(s):  
Md. Adnan ◽  
Md. Nazim Uddin Chy ◽  
A.T.M. Mostafa Kamal ◽  
Md Obyedul Kalam Azad ◽  
Kazi Asfak Ahmed Chowdhury ◽  
...  

Piper sylvaticum Roxb. is traditionally used by the indigenous people of tropical and subtropical countries like Bangladesh, India, and China for relieving the common cold or a variety of chronic diseases, such as asthma, chronic coughing, piles, rheumatic pain, headaches, wounds, tuberculosis, indigestion, and dyspepsia. This study tested anxiolytic and antioxidant activities by in vivo, in vitro, and in silico experiments for the metabolites extracted (methanol) from the leaves and stems of P. sylvaticum (MEPSL and MEPSS). During the anxiolytic evaluation analyzed by elevated plus maze and hole board tests, MEPSL and MEPSS (200 and 400 mg/kg, body weight) exhibited a significant and dose-dependent reduction of anxiety-like behavior in mice. Similarly, mice treated with MEPSL and MEPSS demonstrated dose-dependent increases in locomotion and CNS simulative effects in open field test. In addition, both extracts (MEPSL and MEPSS) also showed moderate antioxidant activities in DPPH scavenging and ferric reducing power assays compared to the standard, ascorbic acid. In parallel, previously isolated bioactive compounds from this plant were documented and subjected to a molecular docking study to correlate them with the pharmacological outcomes. The selected four major phytocompounds displayed favorable binding affinities to potassium channel and xanthine oxidoreductase enzyme targets in molecular docking experiments. Overall, P. sylvaticum is bioactive, as is evident through experimental and computational analysis. Further experiments are necessary to evaluate purified novel compounds for the clinical evaluation.


Author(s):  
Manisha S. Phoujdar ◽  
Gourishankar R. Aland

Objective: CDK2 inhibitors are implicated in several carcinomas viz. Carcinoma of lung, bladder, sarcomas and retinoblastoma. Pyrazolopyrimidines, being purine bioisosters inhibit more than one type of kinase. In this study, we are studying some novel derivatives of 1H-pyrazolo [3,4d] pyrimidines not reported earlier. The objective of the present study is an attempt towards design and development of 1H-[3,4-] pyrazolo-pyrimidines as CDK2 inhibitors through rational drug design.Methods: The present study has been done on CDK2 structure, PDB ID, 3WBL, co-crystallized with ligand PDY from RCSB protein data bank. A series of seventeen 1H-Pyrazolo [3,4-d] pyrimidines feasible for synthesis was docked on the said CDK2 receptor using Auto Dock 4 version, 1.5.6. Outputs were exported to discovery studio 3.5 client for visual inspection of the binding modes and interactions of the compounds with amino acid residues in the active sites.Results: The results of docking studies revealed that the present series of 1H-Pyrazolo[3,4-d] pyrimidines is showing significant binding through hydrogen bonding, hydrophobic, pi and Van der waals interactions, similar to the ligand PDY. Some conserved H-bond interactions comparable to bioisosters and compounds presently under human trials were noted. Ki values predicted in silico also suggest that the series will show promising CDK2 inhibitory activity.Conclusion: The series designed and docked can be further developed by synthesis and in vitro and in vivo activity. The receptor inhibitory activity can also be checked by specific receptor assays.


2020 ◽  
Vol 20 (9) ◽  
pp. 788-800 ◽  
Author(s):  
Sobhi M. Gomha ◽  
Zeinab A. Muhammad ◽  
Elham Ezz El-Arab ◽  
Amira M. Elmetwally ◽  
Abdelaziz A. El-Sayed ◽  
...  

Objective: The reaction of bis(4-amino-4H-1,2,4-triazole-3-thiol) with hydrazonoyl halides and α-halo-ketones gave a new series of bis-1,2,4-triazolo[3,4-b]thiadiazine derivatives. Methods: The structure of the new products was established on the basis of their elemental and spectral data (mass, 1H NMR, 13C NMR and IR) and an alternate method. Results: Several of the synthesized products were subjected to in vitro anticancer screening against human hepatocellular carcinoma (HepG-2) and the results showed that compounds 16, 14 and 12 have promising activities (IC50 value of 24.8±9.1, 28.3±0.5, and 31±2.9μM, respectively) compared with Harmine reference drug (IC50 value of 22.4±1.11 μM). Conclusion: Moreover, molecular docking studies were performed to analyze the binding modes of the discovered hits into the active site of DYRK1A using iGEMDOCK.


2020 ◽  
Vol 8 (1) ◽  
pp. 63-69
Author(s):  
S. Sathiyanarayanan ◽  
◽  
C.S. Venkatesan ◽  
S. Kabilan ◽  
◽  
...  

Regadenoson and Fosphenytoin are USFDA approved drugs which is used for coronary vasodilator and convulsive status epileptics respectively. It is quite natural that low levels of reagents or side products are present in the final active pharmaceutical ingredient (API) or drug product as impurities. Such impurities may have unwanted toxicities, including genotoxicity and carcinogenicity. Hence, it is important to study on impurities present in both the drugs. There are 9 impurities were identified from both drugs and studied pharmacokinetic properties using Qikprop module from Schrödinger software. From the 9 compounds of both the drug’s impurities, 5 compounds obey the Lipinski rule of five and the remaining compounds are having 1 to 3 penalties. All the compounds were subjected to molecular docking study with thermo stabilised HUMAN A2A Receptor with adenosine bound protein (PDB ID: 2YDO) for regadenoson impurities and fosphenytoin impurities were docked with Human GABA-A receptor alpha1-beta2-gamma2 subtype in complex with GABA and flumazenil, conformation A protein (PDB id: 6D6U). All the compounds are showed very good interaction with docked proteins. Further selected compound subjected to in vitro Antibacterial (Gram positive, Gram negative), Antifungal and Antioxidant (DPPH and FRAP) studies.


2018 ◽  
Vol 5 (1) ◽  
pp. 28-32
Author(s):  
Amuthavalli A ◽  
Prakash B ◽  
Velmurugan R

New hetero annulated indoles were synthesized and structurally characterized by spectral means. In order to understand the nature of interactions of these molecules, we carried out molecular docking studies using the protein kinase CK2 inhibitors. The docking results provided some useful information for the futuredesign of more potent inhibitors. The in vitro cytotoxicity was evaluated for all the new compounds by MTT assay against HeLa and compared with the standard drug ellipticine. All the compounds showed moderate to potent activity against the cell lines. The preliminary structure–activity relationships were carried out.


Sign in / Sign up

Export Citation Format

Share Document