African crocus (Curculigo pilosa) and wonderful kola (Buchholzia coriacea) seeds modulate critical enzymes relevant to erectile dysfunction and oxidative stress

Author(s):  
Stephen A. Adefegha ◽  
Sunday I. Oyeleye ◽  
Ganiyu Oboh

AbstractBackgroundThe seeds of African crocus (AC) (Curculigo pilosa) and wonderful kola (WK) (Buchholzia coriacea) are commonly used in folklore medicine in managing erectile dysfunction (ED) without the full understanding of the possible mechanism of actions. This study investigated and compared the effects of aqueous extracts from the seeds of AC and WK on arginase and acetylcholinesterase (AChE) activities and some pro-oxidant [FeSO4and sodium nitroprusside (SNP)]-induced lipid peroxidation in rat penile homogenatein vitro.MethodAqueous extracts of AC and WK were prepared, and their effects on arginase and AChE activities as well as FeSO4- and SNP-induced lipid peroxidation in rat penile homogenate were assessed. Furthermore, phenolic constituents of the extract were determined using high-performance liquid chromatography coupled with diode-array detector (HPLC-DAD).ResultsBoth extracts exhibited concentration-dependent inhibition on arginase (AC, IC50=0.05 mg/mL; WK, IC50=0.22 mg/mL) and AChE (AC, IC50=0.68 mg/mL; WK, IC50=0.28 mg/mL) activities. The extracts also inhibited FeSO4- and SNP-induced lipid peroxidation in rat penile homogenate. HPLC-DAD analysis revealed the presence of phenolic acids (gallic, caffeic, ellagic and coumaric acids) and flavonoids (catechin, quercetin and apigenin) in AC and WK. AC had higher arginase inhibitory and antioxidative activities but lower AChE inhibitory properties when compared with WK.ConclusionsThese effects could explain the possible mechanistic actions of the seeds in the management/treatment of ED and could be as a result of individual and/or synergistic effect of the constituent phenolic compounds of the seeds.

Author(s):  
Olubukola H. Oyeniran ◽  
Adedayo O. Ademiluyi ◽  
Ganiyu Oboh

AbstractObjectivesRauvolfia vomitoria is a medicinal plant used traditionally in Africa in the management of several human diseases including psychosis. However, there is inadequate scientific information on the potency of the phenolic constituents of R. vomitoria leaf in the management of neurodegeneration. Therefore, this study characterized the phenolic constituents and investigated the effects of aqueous and methanolic extracts of R. vomitoria leaf on free radicals, Fe2+-induced lipid peroxidation, and critical enzymes linked to neurodegeneration in rat’s brain in vitro.MethodsThe polyphenols were evaluated by characterizing phenolic constituents using high-performance liquid chromatography coupled with diode array detector (HPLC-DAD). The antioxidant properties were assessed through the extracts ability to reduce Fe3+ to Fe2+; inhibit ABTS, DPPH, and OH radicals and Fe2+-induced lipid peroxidation. The effects of the extracts on AChE and MAO were also evaluated.ResultsThe phenolic characterization of R. vomitoria leaf revealed that there were more flavonoids present. Both aqueous and methanolic extracts of R. vomitoria leaf had inhibitory effects with the methanolic extract having higher significant (p≤0.05) free radicals scavenging ability coupled with inhibition of monoamine oxidases. However, there was no significant (p≤0.05) difference obtained in the inhibition of lipid peroxidation and cholinesterases.ConclusionThis study suggests that the rich phenolic constituents of R. vomitoria leaf might contribute to the observed antioxidative and neuroprotective effects. The methanolic extract was more potent than the aqueous extract; therefore, extraction of R. vomitoria leaf with methanol could offer better health-promoting effects in neurodegenerative condition.


2018 ◽  
Vol 5 (6) ◽  
pp. 180364 ◽  
Author(s):  
Lingguang Yang ◽  
Peipei Yin ◽  
Chi-Tang Ho ◽  
Miao Yu ◽  
Liwei Sun ◽  
...  

This study aimed to investigate effects of thermal treatments on major phenolics and their antioxidant contributions in Acer truncatum leaves and flowers (ATL and ATF, respectively). With ultra performance liquid chromatography-diode array detector-quadrupole time-of-flight-mass spectrometer/mass spectrometer, phenolic compositions of ATF were first characterized and compared with those of ATL. An optimized high performance liquid chromatography fingerprint was then established, and 10 major phenolics existing in both ATL and ATF were quantified. Gallic acid derivatives and flavonol-3- O -glycosides were found to be their dominant phenolic constituents, with the former being key constituents which was affected by thermal treatments and further influencing the variations of total phenols. Moreover, the mechanism underlining the changes of phenolics in ATL and ATF by the treatments was characterized as a thermolhydrolysis process. During thermal treatments, polymerized gallotannins were hydrolysed to 1,2,3,4,6-pentakis- O -galloyl-β- d -glucose, ethyl gallate and gallic acid, resulting in more than fivefold and twofold increase of their contents in ATL and ATF, respectively. By contrast, contents and antioxidant contributions of flavonol-3- O -glycosides gradually decreased during the process.\absbreak Overall, this is, to our knowledge, the first report on the effects of thermal treatments on phenolics and their antioxidant contributions in ATL and ATF, and the three gallic acid derivatives with potentially higher bioactivity could be efficiently achieved by thermal treatments.


2019 ◽  
Vol 7 (4.14) ◽  
pp. 121
Author(s):  
N S Mohammad ◽  
M I A Halim ◽  
M M Mahat ◽  
M F Safian ◽  
Z Z Ariffin

Nitrofurans (NFs) such as furaltadone (FTD), furazolidone (FZD) and nitrofurazone (NFZ) have been used as antibacterials and growth promoters for the poultry and aquaculture industry. These antibiotics have now been banned from use due to their carcinogenic properties; therefore there is an urgent need to remove or degrade NFs from contaminated areas. Aspergillus tamarii isolate TN-7 isolated from antibiotic overexposed soil shows an ability to degrade the NFs antibiotics. After 5 days of incubating of Aspergillus tamarii isolate TN-7 with 500 µg/mL NF, the residual of the NF concentration was determined by High-Performance Liquid Chromatography-diode array detector (HPLC-DAD). Solid phase extraction was performed to clean-up the fermentation broth prior to HPLC-DAD analysis.  Antimicrobial of the NFs residues showed a decreased in the percentage of inhibition that FTD, FZD and NFZ were reduced to to 85.71 %, 75.86 % and 70.97 % after 96 hours of incubation. Quantification using HPLC-DAD showed, after 96 hours of incubation, Aspergillus tamarii isolate TN-7 reduced furaltadone, furazolidone and nitrofurazone to 86.73 %, 37.49 % and 29.17 % respectively. This finding shows that Aspergillus tamarii isolate TN-7 has the potential to be used as a bioremediation tool in removing NF antibiotics from the contaminated areas.    


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Ganiyu Oboh ◽  
Adedayo O. Ademiluyi ◽  
Ayokunle O. Ademosun ◽  
Tosin A. Olasehinde ◽  
Sunday I. Oyeleye ◽  
...  

This study was designed to determine the antioxidant properties and inhibitory effects of extract fromMoringa oleiferaleaves on angiotensin-I-converting enzyme (ACE) and arginase activitiesin vitro. The extract was prepared and phenolic (total phenols and flavonoid) contents, radical (nitric oxide (NO), hydroxyl (OH)) scavenging abilities, and Fe2+-chelating ability were assessed. Characterization of the phenolic constituents was done via high performance liquid chromatography-diode array detection (HPLC-DAD) analysis. Furthermore, the effects of the extract on Fe2+-induced MDA production in rats’ penile tissue homogenate as well as its action on ACE and arginase activities were also determined. The extract scavengedNO∗,OH∗, chelated Fe2+, and inhibited MDA production in a dose-dependent pattern with IC50values of 1.36, 0.52, and 0.38 mg/mL and 194.23 µg/mL, respectively. Gallic acid, chlorogenic acid, quercetin, and kaempferol were the most abundant phenolic compounds identified in the leaf extract. The extract also inhibited ACE and arginase activities in a dose-dependent pattern and their IC50values were 303.03 and 159.59 µg/mL, respectively. The phenolic contents, inhibition of ACE, arginase, and Fe2+-induced MDA production, and radical (OH∗,NO∗) scavenging and Fe2+-chelating abilities could be some of the possible mechanisms by whichM. oleiferaleaves could be used in the treatment and/or management of erectile dysfunction.


2018 ◽  
Vol 29 (6) ◽  
pp. 689-696 ◽  
Author(s):  
Ganiyu Oboh ◽  
Adeniyi A. Adebayo ◽  
Ayokunle O. Ademosun

Abstract Background: Herbs have been used from ages to manage male sexual dysfunction. Hence, this study sought to investigate the effects of Eurycoma longifolia (EL) and Cylicodiscus gabunensis (CG) stem bark extracts on some enzymes implicated in erectile dysfunction in vitro. Methods: The extracts were prepared, and their effects on phosphodiesterase-5 (PDE-5), arginase, and angiotensin-1-converting enzyme (ACE) as well as pro-oxidant-induced lipid peroxidation were assessed. Furthermore, phenolic contents were determined, and their components were characterized and quantified using high-performance liquid chromatography with diode array detector (HPLC-DAD). Results: The results revealed that the extracts inhibited PDE-5, arginase, and ACE in a concentration-dependent manner. However, IC50 values revealed that CG had higher inhibitory potential on PDE-5 (IC50=204.4 μg/mL), arginase (IC50=39.01 μg/mL), and ACE (IC50=48.81 μg/mL) than EL. In addition, the extracts inhibited pro-oxidant-induced lipid peroxidation in penile tissue homogenate. HPLC-DAD analysis showed that CG is richer in phenolic compounds than EL, and this could be responsible for higher biological activities observed in CG than EL. Conclusions: Hence, the observed antioxidant property and inhibitory action of CG and EL on enzymes relevant to erectile dysfunction in vitro could be part of possible mechanisms underlying their involvement in traditional medicine for the management of male sexual dysfunction.


Author(s):  
Mariola Dreger ◽  
Katarzyna Seidler-Łożykowska ◽  
Milena Szalata ◽  
Artur Adamczak ◽  
Karolina Wielgus

AbstractThe purpose of the study was to evaluate Chamerion angustifolium (L.) Holub genotypes for preliminary selection and further breeding programs aimed at obtaining a suitable industrial form for the pharmaceutical applications. Clonally propagated plants representing 10 genotypes of Ch. angustifolium were regenerated under in vitro conditions, hardened and planted in the field. Studies included an evaluation of shoot proliferation, phytochemical assessment of in vitro and ex vitro plants as well as investigations of intraspecies variability regarding four phenological stages: vegetative, beginning of blooming, full blooming, and green fruit phases. Quantitative and qualitative analyses of bioactive compounds were performed using high-performance liquid chromatography coupled with diode array detector and tandem mass spectrometer (HPLC–DAD–MS/MS) and high-performance liquid chromatography (HPLC) methods. The efficiency of shoot multiplication varied between genotypes from 8.12 to 21.48 shoots per explant. A high reproduction rate (> 20 shoots per explant) was recorded for four lines (PL_45, PL_44, PL_58, DE_2). Plants grown in vitro synthesized oenothein B (11.2–22.3 mg g−1 DW) and caffeic acid derivatives. Plants harvested from field contained the full spectrum of polyphenols characteristic for this species, and oenothein B and quercetin 3-O-glucuronide were the most abundant. The maximal content of oenothein B was determined in the vegetative phase of fireweed, while some flavonoids were found in the highest amount in full blooming phase. The results of analysis of variance indicated significant differences among genotypes in oenothein B, 3-O-caffeoylquinic acid and flavonoids accumulation in four phenological phases. PL_44 plants were characterized by high content of oenothein B and quercetin 3-O-glucuronide as well as a relatively high level of other flavonoids. Based on our phytochemical and micropropagation studies, PL_44 genotype was the best candidate for early selection and further breeding programs.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 321
Author(s):  
Maria Orfanoudaki ◽  
Anja Hartmann ◽  
Julia Mayr ◽  
Félix L. Figueroa ◽  
Julia Vega ◽  
...  

This study presents the validation of a high-performance liquid chromatography diode array detector (HPLC-DAD) method for the determination of different mycosporine-like amino acids (MAAs) in the red alga Bostrychia scorpioides. The investigated MAAs, named bostrychines, have only been found in this specific species so far. The developed HPLC-DAD method was successfully applied for the quantification of the major MAAs in Bostrychia scorpioides extracts, collected from four different countries in Europe showing only minor differences between the investigated samples. In the past, several Bostrychia spp. have been reported to include cryptic species, and in some cases such as B. calliptera, B. simpliciuscula, and B. moritziana, the polyphyly was supported by differences in their MAA composition. The uniformity in the MAA composition of the investigated B. scorpioides samples is in agreement with the reported monophyly of this Bostrychia sp.


Sign in / Sign up

Export Citation Format

Share Document