scholarly journals Imaging of buried objects from multi-frequency experimental data using a globally convergent inversion method

2018 ◽  
Vol 26 (4) ◽  
pp. 501-522 ◽  
Author(s):  
Dinh-Liem Nguyen ◽  
Michael V. Klibanov ◽  
Loc H. Nguyen ◽  
Michael A. Fiddy

Abstract This paper is concerned with the numerical solution to a three-dimensional coefficient inverse problem for buried objects with multi-frequency experimental data. The measured data, which are associated with a single direction of an incident plane wave, are backscatter data for targets buried in a sandbox. These raw scattering data were collected using a microwave scattering facility at the University of North Carolina at Charlotte. We develop a data preprocessing procedure and exploit a newly developed globally convergent inversion method for solving the inverse problem with these preprocessed data. It is shown that dielectric constants of the buried targets as well as their locations are reconstructed with a very good accuracy. We also prove a new analytical result which rigorously justifies an important step of the so-called “data propagation” procedure.

Author(s):  
V.Y. Lunin ◽  
N.L. Lunina ◽  
T.E. Petrova

The development of experimental techniques, in particular the emergence of the X-ray free-electron lasers, allows one to register the scattering from an isolated particle and, thereby, opens a door to the study of a fine three-dimensional structure of non-crystalline biological objects by X-ray diffraction methods. The possibility to measure non-Bragg reflections makes experimental data mutually dependent and essentially simplifies the structure solution. The sampling of experimental scattering data to a sufficiently fine grid makes the structure determination equivalent to phasing of structure factor magnitudes for a 'virtual' crystal with extremely large solvent content. This makes density modification phasing methods especially powerful supposing the object envelope is known. At the same time, such methods may be sensitive to the accuracy of the predefined envelope and completeness of experimental data and may suffer from non-uniqueness of the solution of the phase problem. The mask-based approach is a preliminary phasing method that performs random search for connected object envelopes possessing of the structure factor magnitudes close to the values observed in X-ray experiment. The alignment and averaging of the phase sets corresponding to selected putative envelopes produce an approximate solution of the phase problem. Beside the estimation of unknown phase values this approach allows one to estimate the values of structure factor magnitudes lost in the experiment, e.g. those corresponding to beam-stop shade zone or to oversaturated reflections.


2002 ◽  
Vol 12 (08) ◽  
pp. 1885-1893
Author(s):  
YANG LEI ◽  
YINGHAI WANG ◽  
KONGQING YANG ◽  
YOUMING LI

This paper presents a method of solving partial differential equation (PDE) inverse problem by using chaos control techniques. As an example, the chaos control inversion method of the wave equation inverse problem in tenpoint l + 1 dimensions is shown. The effectiveness of the method is demonstrated by the experimental data of the seismic wave inverse problem.


Author(s):  
Eaton E. Lattman ◽  
Thomas D. Grant ◽  
Edward H. Snell

Direct electron density determination from SAXS data opens up new opportunities. The ability to model density at high resolution and the implicit direct estimation of solvent terms such as the hydration shell may enable high-resolution wide angle scattering data to be used to calculate density when combined with additional structural information. Other diffraction methods that do not measure three-dimensional intensities, such as fiber diffraction, may also be able to take advantage of iterative structure factor retrieval. While the ability to reconstruct electron density ab initio is a major breakthrough in the field of solution scattering, the potential of the technique has yet to be fully uncovered. Additional structural information from techniques such as crystallography, NMR, and electron microscopy and density modification procedures can now be integrated to perform advanced modeling of the electron density function at high resolution, pushing the boundaries of solution scattering further than ever before.


Author(s):  
Rahid Zaman ◽  
Yujiang Xiang ◽  
Jazmin Cruz ◽  
James Yang

In this study, the three-dimensional (3D) asymmetric maximum weight lifting is predicted using an inverse-dynamics-based optimization method considering dynamic joint torque limits. The dynamic joint torque limits are functions of joint angles and angular velocities, and imposed on the hip, knee, ankle, wrist, elbow, shoulder, and lumbar spine joints. The 3D model has 40 degrees of freedom (DOFs) including 34 physical revolute joints and 6 global joints. A multi-objective optimization (MOO) problem is solved by simultaneously maximizing box weight and minimizing the sum of joint torque squares. A total of 12 male subjects were recruited to conduct maximum weight box lifting using squat-lifting strategy. Finally, the predicted lifting motion, ground reaction forces, and maximum lifting weight are validated with the experimental data. The prediction results agree well with the experimental data and the model’s predictive capability is demonstrated. This is the first study that uses MOO to predict maximum lifting weight and 3D asymmetric lifting motion while considering dynamic joint torque limits. The proposed method has the potential to prevent individuals’ risk of injury for lifting.


2020 ◽  
Vol 21 (20) ◽  
pp. 7702 ◽  
Author(s):  
Sofya I. Scherbinina ◽  
Philip V. Toukach

Analysis and systematization of accumulated data on carbohydrate structural diversity is a subject of great interest for structural glycobiology. Despite being a challenging task, development of computational methods for efficient treatment and management of spatial (3D) structural features of carbohydrates breaks new ground in modern glycoscience. This review is dedicated to approaches of chemo- and glyco-informatics towards 3D structural data generation, deposition and processing in regard to carbohydrates and their derivatives. Databases, molecular modeling and experimental data validation services, and structure visualization facilities developed for last five years are reviewed.


Author(s):  
Stephan Uhkoetter ◽  
Stefan aus der Wiesche ◽  
Michael Kursch ◽  
Christian Beck

The traditional method for hydrodynamic journal bearing analysis usually applies the lubrication theory based on the Reynolds equation and suitable empirical modifications to cover turbulence, heat transfer, and cavitation. In cases of complex bearing geometries for steam and heavy-duty gas turbines this approach has its obvious restrictions in regard to detail flow recirculation, mixing, mass balance, and filling level phenomena. These limitations could be circumvented by applying a computational fluid dynamics (CFD) approach resting closer to the fundamental physical laws. The present contribution reports about the state of the art of such a fully three-dimensional multiphase-flow CFD approach including cavitation and air entrainment for high-speed turbo-machinery journal bearings. It has been developed and validated using experimental data. Due to the high ambient shear rates in bearings, the multiphase-flow model for journal bearings requires substantial modifications in comparison to common two-phase flow simulations. Based on experimental data, it is found, that particular cavitation phenomena are essential for the understanding of steam and heavy-duty type gas turbine journal bearings.


1984 ◽  
Vol 62 (3) ◽  
pp. 596-600 ◽  
Author(s):  
R. G. Barradas ◽  
D. S. Nadezhdin

The cathodic reduction of the lead monoxide layer formed on lead in 30% aqueous H2SO4 under anodic oxidation at 0.6 V (vs. Hg/HgSO4 reference electrode) was investigated by linear sweep voltammetry, potential step and admittance measurements. The experimental data were analyzed respectively in terms of thin-layer electrochemistry, electrocrystallisation, and changes of resistance of the PbO layer under reduction. The results seem to be best interpreted from the theory of three-dimensional electrocrystallisation as PbO is reduced to Pb. At sub-zero temperatures the PbO peak observed on our voltammograms and potentiostatic current time transients reveals the splitting of the curves into two peaks, which may be a result of reduction of the same material but of different phases, namely, orthorhombic and tetragonal PbO.


1962 ◽  
Vol 99 (6) ◽  
pp. 558-569 ◽  
Author(s):  
Peter J. Wyllie

AbstractBowen's petrogenetic grid is a PT projection containing univariant curves for decarbonation, dehydration, and solid-solid reactions, with vapour pressure (Pf) equal to total pressure (Ps). Analysis of experimental data in the system MgO–CO2–H2O leads to an expansion of this grid. Three of the important variables in metamorphism when Pf = Ps are P, T, and variation of the pore fluid composition between H2O and CO2. These can be illustrated in a three-dimensional petrogenetic model; one face is a PT plane for reactions occurring with pure H2O, and the opposite face is a similar plane for reactions with pure CO2; these are separated by an axis for pore fluid composition varying between H2O and CO2. Superposition of the PT faces of the model provides the petrogenetic grid. The reactions within the model are represented by divariant surfaces, which may meet along univariant lines. For dissociation reactions, the surfaces curve towards lower temperatures as the proportion of non-reacting volatile increases, and solid-solid reaction surfaces are parallel to the vapour composition axis and perpendicular to the PT axes. The relative temperatures of reactions and the lines of intersections of the surfaces can be illustrated in isobaric sections. Isobaric sections are used to illustrate reactions proceeding at constant pressure with (1) pore fluid composition remaining constant during the reaction, with temperature increasing (2) pore fluid composition changing during the reaction, with temperature increasing, and (3) pore fluid changing composition at constant temperature. The petrogenetic model provides a convenient framework for a wide range of experimental data.


Sign in / Sign up

Export Citation Format

Share Document