An Experimental Comparison of Modeling Techniques and Combination of Speaker – Specific Information from Different Languages for Multilingual Speaker Identification

2016 ◽  
Vol 25 (4) ◽  
pp. 529-538
Author(s):  
H.S. Jayanna ◽  
B.G. Nagaraja

AbstractMost of the state-of-the-art speaker identification systems work on a monolingual (preferably English) scenario. Therefore, English-language autocratic countries can use the system efficiently for speaker recognition. However, there are many countries, including India, that are multilingual in nature. People in such countries have habituated to speak multiple languages. The existing speaker identification system may yield poor performance if a speaker’s train and test data are in different languages. Thus, developing a robust multilingual speaker identification system is an issue in many countries. In this work, an experimental evaluation of the modeling techniques, including self-organizing map (SOM), learning vector quantization (LVQ), and Gaussian mixture model-universal background model (GMM-UBM) classifiers for multilingual speaker identification, is presented. The monolingual and crosslingual speaker identification studies are conducted using 50 speakers of our own database. It is observed from the experimental results that the GMM-UBM classifier gives better identification performance than the SOM and LVQ classifiers. Furthermore, we propose a combination of speaker-specific information from different languages for crosslingual speaker identification, and it is observed that the combination feature gives better performance in all the crosslingual speaker identification experiments.

Author(s):  
Musab T. S. Al-Kaltakchi ◽  
Haithem Abd Al-Raheem Taha ◽  
Mohanad Abd Shehab ◽  
Mohamed A.M. Abdullah

<p><span lang="EN-GB">In this paper, different feature extraction and feature normalization methods are investigated for speaker recognition. With a view to give a good representation of acoustic speech signals, Power Normalized Cepstral Coefficients (PNCCs) and Mel Frequency Cepstral Coefficients (MFCCs) are employed for feature extraction. Then, to mitigate the effect of linear channel, Cepstral Mean-Variance Normalization (CMVN) and feature warping are utilized. The current paper investigates Text-independent speaker identification system by using 16 coefficients from both the MFCCs and PNCCs features. Eight different speakers are selected from the GRID-Audiovisual database with two females and six males. The speakers are modeled using the coupling between the Universal Background Model and Gaussian Mixture Models (GMM-UBM) in order to get a fast scoring technique and better performance. The system shows 100% in terms of speaker identification accuracy. The results illustrated that PNCCs features have better performance compared to the MFCCs features to identify females compared to male speakers. Furthermore, feature wrapping reported better performance compared to the CMVN method. </span></p>


2021 ◽  
Author(s):  
Chander Prabha ◽  
Sukhvinder Kaur ◽  
Meenu Gupta ◽  
Fadi Al-Turjman

Abstract An important application of speech processing is speaker recognition, which automatically recognizes the person speaking in an audio recording, basis of which is speaker-specific information included in its speech features. It involves speaker verification and speaker identification. This paper presents an efficient method based on discrete wavelet transform and optimized variance spectral flux to enhance the enactment of speaker identification system. An effective feature extraction technique uses Daubechies 40 (db40) wavelet to compress and de-noised the speech signal by its decomposition into approximations and details coefficients at level 1. The approximation coefficients contain 99.9% of speech information as compared to detailed coefficients. So, the optimized variance spectral flux is applied on wavelet approximation coefficients which efficiently extract the frequency contents of the speech signal and gives unique features. The distance between extracted features has been obtained by applying traditional Bayesian information criteria. Experimental results were computed on recording data of 33 speakers (23 female and 10 males) for text independent identification of speaker. Evaluation of effectiveness of the proposed system is done by applying detection error trade-off curves, receiver operating characteristic, and area under curve. It shows 94.38% of speaker identification results when compared with traditional method using Mel frequency spectral coefficients which is 90.70%.


Author(s):  
A. Nagesh

The feature vectors of speaker identification system plays a crucial role in the overall performance of the system. There are many new feature vectors extraction methods based on MFCC, but ultimately we want to maximize the performance of SID system.  The objective of this paper to derive Gammatone Frequency Cepstral Coefficients (GFCC) based a new set of feature vectors using Gaussian Mixer model (GMM) for speaker identification. The MFCC are the default feature vectors for speaker recognition, but they are not very robust at the presence of additive noise. The GFCC features in recent studies have shown very good robustness against noise and acoustic change. The main idea is  GFCC features based on GMM feature extraction is to improve the overall speaker identification performance in low signal to noise ratio (SNR) conditions.


The performance of Mel scale and Bark scale is evaluated for text-independent speaker identification system. Mel scale and Bark scale are designed according to human auditory system. The filter bank structure is defined using Mel and Bark scales for speech and speaker recognition systems to extract speaker specific speech features. In this work, performance of Mel scale and Bark scale is evaluated for text-independent speaker identification system. It is found that Bark scale centre frequencies are more effective than Mel scale centre frequencies in case of Indian dialect speaker databases. Mel scale is defined as per interpretation of pitch by human ear and Bark scale is based on critical band selectivity at which loudness becomes significantly different. The recognition rate achieved using Bark scale filter bank is 96% for AISSMSIOIT database and 95% for Marathi database.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Phaklen EhKan ◽  
Timothy Allen ◽  
Steven F. Quigley

In today's society, highly accurate personal identification systems are required. Passwords or pin numbers can be forgotten or forged and are no longer considered to offer a high level of security. The use of biological features, biometrics, is becoming widely accepted as the next level for security systems. Biometric-based speaker identification is a method of identifying persons from their voice. Speaker-specific characteristics exist in speech signals due to different speakers having different resonances of the vocal tract. These differences can be exploited by extracting feature vectors such as Mel-Frequency Cepstral Coefficients (MFCCs) from the speech signal. A well-known statistical modelling process, the Gaussian Mixture Model (GMM), then models the distribution of each speaker's MFCCs in a multidimensional acoustic space. The GMM-based speaker identification system has features that make it promising for hardware acceleration. This paper describes the hardware implementation for classification of a text-independent GMM-based speaker identification system. The aim was to produce a system that can perform simultaneous identification of large numbers of voice streams in real time. This has important potential applications in security and in automated call centre applications. A speedup factor of ninety was achieved compared to a software implementation on a standard PC.


2013 ◽  
Vol 401-403 ◽  
pp. 1489-1492
Author(s):  
Qiang Li ◽  
Ming Bing Zhao ◽  
Yong Feng

Gaussian Mixture Model-Universal Background Model based approaches have been popular used for speaker identification task. But in real complex environment the identification system performs too much worse than in laboratory, and the main reason is the mismatch of the training and testing channel and also the variability of the speaker himself. In this paper we introduce i-vector to the speaker identification system. In i-vector approach, a low dimensional subspace called total variability space is used to estimate both speaker and channel variability. Baum-Welch statistics are first computed over the given UBM to estimate the total variability. From the experiment results, we obtain 2.44% relative accurate identification rate improvement when using total variability space to compensate the mismatch of the variabilities from both the speaker and channel.


Author(s):  
Anny Tandyo ◽  
Martono Martono ◽  
Adi Widyatmoko

Article discussed a speaker identification system. Which was a part of speaker recognition. The system identified asubject based on the voice from a group of pattern had been saved before. This system used a wavelet discrete transformationas a feature extraction method and an artificial neural network of back-propagation as a classification method. The voiceinput was processed by the wavelet discrete transformation in order to obtain signal coefficient of low frequency as adecomposition result which kept voice characteristic of everyone. The coefficient then was classified artificial neural networkof back-propagation. A system trial was conducted by collecting voice samples directly by using 225 microphones in nonsoundproof rooms; contained of 15 subjects (persons) and each of them had 15 voice samples. The 10 samples were used as atraining voice and 5 others as a testing voice. Identification accuracy rate reached 84 percent. The testing was also done onthe subjects who pronounced same words. It can be concluded that, the similar selection of words by different subjects has noinfluence on the accuracy rate produced by system.Keywords: speaker identification, wavelet discrete transformation, artificial neural network, back-propagation.


2019 ◽  
Vol 33 (35) ◽  
pp. 1950438 ◽  
Author(s):  
Manish Gupta ◽  
Shambhu Shankar Bharti ◽  
Suneeta Agarwal

Speech is a convenient medium for communication among human beings. Speaker recognition is a process of automatically recognizing the speaker by processing the information included in the speech signal. In this paper, a new approach is proposed for speaker recognition through speech signal. Here, a two-level approach is proposed. In the first-level, the gender of the speaker is recognized, and in the second-level speaker is recognized based on recognized gender at first-level. After recognizing the gender of the speaker, search space is reduced to half for the second-level as speaker recognition system searches only in a set of speech signals belonging to identified gender. To identify gender, gender-specific features: Mel Frequency Cepstral Coefficients (MFCC) and pitch are used. Speaker is recognized by using speaker specific features: MFCC, Pitch and RASTA-PLP. Support Vector Machine (SVM) and Gaussian Mixture Model (GMM) classifiers are used for identifying the gender and recognizing the speaker, respectively. Experiments are performed on speech signals of two databases: “IIT-Madras speech synthesis and recognition” (containing speech samples spoken by eight male and eight female speakers of eight different regions in English language) and “ELSDSR” (containing speech samples spoken by five male and five female in English language). Experimentally, it is observed that by using two-level approach, time taken for speaker recognition is reduced by 30–32% as compared to the approach when speaker is recognized without identifying the gender (single-level approach). The accuracy of speaker recognition in this proposed approach is also improved from 99.7% to 99.9% as compared to single-level approach. It is concluded through the experiments that speech signal of a minimum 1.12 duration (after neglecting silence parts) is sufficient for recognizing the speaker.


Author(s):  
Minho Jin ◽  
Chang D. Yoo

A speaker recognition system verifies or identifies a speaker’s identity based on his/her voice. It is considered as one of the most convenient biometric characteristic for human machine communication. This chapter introduces several speaker recognition systems and examines their performances under various conditions. Speaker recognition can be classified into either speaker verification or speaker identification. Speaker verification aims to verify whether an input speech corresponds to a claimed identity, and speaker identification aims to identify an input speech by selecting one model from a set of enrolled speaker models. Both the speaker verification and identification system consist of three essential elements: feature extraction, speaker modeling, and matching. The feature extraction pertains to extracting essential features from an input speech for speaker recognition. The speaker modeling pertains to probabilistically modeling the feature of the enrolled speakers. The matching pertains to matching the input feature to various speaker models. Speaker modeling techniques including Gaussian mixture model (GMM), hidden Markov model (HMM), and phone n-grams are presented, and in this chapter, their performances are compared under various tasks. Several verification and identification experimental results presented in this chapter indicate that speaker recognition performances are highly dependent on the acoustical environment. A comparative study between human listeners and an automatic speaker verification system is presented, and it indicates that an automatic speaker verification system can outperform human listeners. The applications of speaker recognition are summarized, and finally various obstacles that must be overcome are discussed.


Sign in / Sign up

Export Citation Format

Share Document