An Efficient Technique for Three-Dimensional Image Visualization Through Two-Dimensional Images for Medical Data

2017 ◽  
Vol 29 (1) ◽  
pp. 100-109
Author(s):  
Ganesan Gunasekaran ◽  
Meenakshisundaram Venkatesan

Abstract The main idea behind this work is to present three-dimensional (3D) image visualization through two-dimensional (2D) images that comprise various images. 3D image visualization is one of the essential methods for excerpting data from given pieces. The main goal of this work is to figure out the outlines of the given 3D geometric primitives in each part, and then integrate these outlines or frames to reconstruct 3D geometric primitives. The proposed technique is very useful and can be applied to many kinds of images. The experimental results showed a very good determination of the reconstructing process of 2D images.

2021 ◽  
Vol 7 (3) ◽  
pp. 209-219
Author(s):  
Iris J Holzleitner ◽  
Alex L Jones ◽  
Kieran J O’Shea ◽  
Rachel Cassar ◽  
Vanessa Fasolt ◽  
...  

Abstract Objectives A large literature exists investigating the extent to which physical characteristics (e.g., strength, weight, and height) can be accurately assessed from face images. While most of these studies have employed two-dimensional (2D) face images as stimuli, some recent studies have used three-dimensional (3D) face images because they may contain cues not visible in 2D face images. As equipment required for 3D face images is considerably more expensive than that required for 2D face images, we here investigated how perceptual ratings of physical characteristics from 2D and 3D face images compare. Methods We tested whether 3D face images capture cues of strength, weight, and height better than 2D face images do by directly comparing the accuracy of strength, weight, and height ratings of 182 2D and 3D face images taken simultaneously. Strength, height and weight were rated by 66, 59 and 52 raters respectively, who viewed both 2D and 3D images. Results In line with previous studies, we found that weight and height can be judged somewhat accurately from faces; contrary to previous research, we found that people were relatively inaccurate at assessing strength. We found no evidence that physical characteristics could be judged more accurately from 3D than 2D images. Conclusion Our results suggest physical characteristics are perceived with similar accuracy from 2D and 3D face images. They also suggest that the substantial costs associated with collecting 3D face scans may not be justified for research on the accuracy of facial judgments of physical characteristics.


Author(s):  
Aleksandr Brailov ◽  
Vitaliy Panchenko

In the present research the optimizing approach to the determination of the parameters of an inaccessible point of an object is developed. The common issues are revealed and essential steps of their resolution are identified. The essence of the problem is an objective contradiction between a requirement for the location of points A and B of the centers of the sighting tubes of optical devices in the same horizontal plane P1 and the lack of a real possibility to perform such to achieve this an identical one-level arrangement without error. The aim of the study is to develop strategies for determining the position of an inaccessible point of an object in the minimum domain between intersecting sighting rays as well as an adaptive algorithm for determining the values of the parameters of an inaccessible point under the given absolute and relative errors. To achieve this aim, the following problems are formulated and solved in the paper: 1. Develop strategies for determining the position of the inaccessible point of the object in the minimum domain between the intersecting sighting rays. 2. Develop an adaptive algorithm for determining the values of the parameters of an inaccessible point based on the specified absolute and relative errors. In the proposed optimizing approach, the three-dimensional geometrical model with crossed directional rays for the determination of coordinates of the inaccessible point of an object is developed. It is discussed that points С and C', coordinated of which to be determined, locates in domain [CDM, CEM], [C'D'M, C'E'M] of the minimum distance ρmin between crossed directional rays. The optimizing problem of the determination of coordinates of an inaccessible point of an object in space is reduced to a problem of the determination of the minimum distance between two crossed directional rays. It’s known from the theory of function of multiple variables that function ρ = f (tC'D', tC'E') reaches its extremum ρmin when its partial derivatives by each variable are equal to zero. Three strategies for selecting the position of the inaccessible point C (xC, yC, zC) in the found minimum region [CDM, CEM] are proposed. The required point C' (xC', yC', zC') can be located, for example, in the middle of the minimum segment [C'D'M, C'E'M]. The essence of the adaptive algorithm is in optimizing the variation of the initial values of data α, α', β, γ, γ', AB, at which the absolute and relative errors of the coordinates of the inaccessible point satisfy the error values set by the customer (0.0001-1.2%) The proposed approach is verified using real experimental data.


1997 ◽  
Vol 3 (S2) ◽  
pp. 375-376
Author(s):  
José-Angel Conchello ◽  
Joanne Markham ◽  
James G. McNally

Three dimensional (3D)microscopy is a powerful toll for the visualization of biological specimens and processes. In 3D microscopy, a 3D image is collected by recording a series of two-dimensional (2D) images focusing the microscope at different planes through the specimen. Each 2D optical slice in this through focus series contains the in-focus information plus contributions from out-of-focus structures that obscure the image and reduce its contrast. There are two complementary approaches to reduce or ameliorate the effects of the out-of-focus contributions, optical and computational. In the optical approach a microscope is used that avoids collecting out-of-focus light, such as a confocal microscope (see and references therein), a two-photon or three-photon fluorescence excitation microscope, or atwo-sided microscope. In the computational approach, the through-focus series is processed in a computer using any of a number of debluring algorithms to reduce or ameliorate the out-of-focus contributions. In the past two decades, several methods for debluring microscopic images have been developed whose common aim is to undo the degradations introduced by the process of image formation and recording


2001 ◽  
Vol 24 (2) ◽  
pp. 224-225
Author(s):  
Katherine A. Leighty ◽  
Sarah E. Cummins-Sebree ◽  
Dorothy M. Fragaszy

The arguments of Stoffregen & Bardy for studying perception based on the global array are intriguing. This theory can be examined in nonhuman species using nonverbal tasks. We examine how monkeys master a skill that incorporates a two-dimensional/three-dimensional interface. We feel this provides excellent support for Stoffregen & Bardy's theory.


2012 ◽  
Vol 6 (1) ◽  
pp. 87-128 ◽  
Author(s):  
JOHN T. BALDWIN

AbstractWe emphasize the role of the choice of vocabulary in formalization of a mathematical area and remark that this is a particular preoccupation of logicians. We use this framework to discuss Kennedy’s notion of ‘formalism freeness’ in the context of various schools in model theory. Then we clarify some of the mathematical issues in recent discussions of purity in the proof of the Desargues proposition. We note that the conclusion of ‘spatial content’ from the Desargues proposition involves arguments which are algebraic and even metamathematical. Hilbert showed that the Desargues proposition implies the coordinatizing ring is associative, which in turn implies the existence of a three-dimensional geometry in which the given plane can be embedded. With W. Howard we give a new proof, removing Hilbert’s ‘detour’ through algebra, of the ‘geometric’ embedding theorem.Finally, our investigation of purity leads to the conclusion that even the introduction of explicit definitions in a proof can violate purity. We argue that although both involve explicit definition, our proof of the embedding theorem is pure while Hilbert’s is not. Thus the determination of whether an argument is pure turns on the content of the particular proof. Moreover, formalizing the situation does not provide a tool for characterizing purity.


2011 ◽  
Vol 81 (5) ◽  
pp. 856-864 ◽  
Author(s):  
Natalia Zamora ◽  
Jose M. Llamas ◽  
Rosa Cibrián ◽  
Jose L. Gandia ◽  
Vanessa Paredes

Abstract Objective: To assess whether the values of different measurements taken on three-dimensional (3D) reconstructions from cone-beam computed tomography (CBCT) are comparable with those taken on two-dimensional (2D) images from conventional lateral cephalometric radiographs (LCRs) and to examine if there are differences between the different types of CBCT software when taking those measurements. Material and Methods: Eight patients were selected who had both an LRC and a CBCT. The 3D reconstructions of each patient in the CBCT were evaluated using two different software packages, NemoCeph 3D and InVivo5. An observer took 10 angular and 3 linear measurements on each of the three types of record on two different occasions. Results: Intraobserver reliability was high except for the mandibular plane and facial cone (from the LCR), the Na-Ans distance (using NemoCeph 3D), and facial cone and the Ans-Me distance (using InVivo5). No statistically significant differences were found for the angular and linear measurements between the LCRs and the CBCTs for any measurement, and the correlation levels were high for all measurements. Conclusion: No statistically significant differences were found between the angular and linear measurements taken with the LCR and those taken with the CBCT. Neither were there any statistically significant differences between the angular or linear measurements using the two CBCT software packages.


Author(s):  
Kotaro Yoshida ◽  
Hidefumi Wakamatsu ◽  
Eiji Morinaga ◽  
Takahiro Kubo

Abstract A method to design the two-dimensional shapes of patterns of two piece brassiere cup is proposed when its target three-dimensional shape is given as a cloud of its data points. A brassiere cup consists of several patterns and their shapes are designed by repeatedly making a paper cup model and checking its three-dimensional shape. For improvement of design efficiency of brassieres, such trial and error must be reduced. As a cup model for check is made of paper not cloth, it is assumed that the surface of the model is composed of several developable surfaces. When two lines that consist in the developable surface are given, the surface can be determined. Then, the two-piece brassiere cup can be designed by minimizing the error between the surface and given data points. It was mathematically verified that the developable surface calculated by our propose method can reproduce the given data points which is developable surface.


1980 ◽  
Vol 15 (1) ◽  
pp. 37-41 ◽  
Author(s):  
P S Theocaris ◽  
N I Ioakimidis

The optical method of caustics constitutes an efficient experimental technique for the determination of quantities of interest in elasticity problems. Up to now, this method has been applied only to two-dimensional elasticity problems (including plate and shell problems). In this paper, the method of caustics is extended to the case of three-dimensional elasticity problems. The particular problems of a concentrated force and a uniformly distributed loading acting normally on a half-space (on a circular region) are treated in detail. Experimentally obtained caustics for the first of these problems were seen to be in satisfactory agreement with the corresponding theoretical forms. The treatment of various, more complicated, three-dimensional elasticity problems, including contact problems, by the method of caustics is also possible.


1960 ◽  
Vol 27 (3) ◽  
pp. 381-389 ◽  
Author(s):  
Kurt Spielberg ◽  
Hans Timan

A system of ordinary, coupled differential equations is set up for three-dimensional disturbances of Poiseuille flow in a straight pipe of circular cross section. The commonly treated equations are shown to be special cases arising from particular assumptions. It is shown that in the nonviscous, and therefore also in the general case, there exists, in contrast to the analogous problem in Cartesian co-ordinates, no transformation reducing the given problem to a two-dimensional one. A fourth-order differential equation is derived for disturbances independent of the direction of the main flow. The solutions, which are obtained, show that those two-dimensional disturbances, termed cross disturbances, decay with time and do therefore not disturb the stability of the main flow. Explicit expressions for the cross disturbances are obtained and a discussion of their nature is given.


Sign in / Sign up

Export Citation Format

Share Document