scholarly journals Guaranteed Upper Bounds For The Velocity Error Of Pressure-Robust Stokes Discretisations

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
P.L. Lederer ◽  
C. Merdon

Abstract This paper aims to improve guaranteed error control for the Stokes problem with a focus on pressure-robustness, i.e. for discretisations that compute a discrete velocity that is independent of the exact pressure. A Prager-Synge type result relates the velocity errors of divergence-free primal and perfectly equilibrated dual mixed methods for the velocity stress. The first main result of the paper is a framework with relaxed constraints on the primal and dual method. This enables to use a recently developed mass conserving mixed stress discretisation for the design of equilibrated fluxes and to obtain pressure-independent guaranteed upper bounds for any pressure-robust (not necessarily divergence-free) primal discretisation. The second main result is a provably efficient local design of the equilibrated fluxes with comparably low numerical costs. Numerical examples verify the theoretical findings and show that efficiency indices of our novel guaranteed upper bounds are close to one.

2018 ◽  
Vol 18 (3) ◽  
pp. 353-372 ◽  
Author(s):  
Naveed Ahmed ◽  
Alexander Linke ◽  
Christian Merdon

AbstractIn this contribution, we review classical mixed methods for the incompressible Navier–Stokes equations that relax the divergence constraint and are discretely inf-sup stable. Though the relaxation of the divergence constraint was claimed to be harmless since the beginning of the 1970s, Poisson locking is just replaced by another more subtle kind of locking phenomenon, which is sometimes called poor mass conservation and led in computational practice to the exclusion of mixed methods with low-order pressure approximations like the Bernardi–Raugel or the Crouzeix–Raviart finite element methods. Indeed, divergence-free mixed methods and classical mixed methods behave qualitatively in a different way: divergence-free mixed methods are pressure-robust, which means that, e.g., their velocity error is independent of the continuous pressure. The lack of pressure robustness in classical mixed methods can be traced back to a consistency error of an appropriately defined discrete Helmholtz projector. Numerical analysis and numerical examples reveal that really locking-free mixed methods must be discretely inf-sup stable and pressure-robust, simultaneously. Further, a recent discovery shows that locking-free, pressure-robust mixed methods do not have to be divergence free. Indeed, relaxing the divergence constraint in the velocity trial functions is harmless, if the relaxation of the divergence constraint in some velocity test functions is repaired, accordingly. Thus, inf-sup stable, pressure-robust mixed methods will potentially allow in future to reduce the approximation order of the discretizations used in computational practice, without compromising the accuracy.


2016 ◽  
Vol 16 (4) ◽  
pp. 609-631 ◽  
Author(s):  
Immanuel Anjam ◽  
Dirk Pauly

AbstractThe results of this contribution are derived in the framework of functional type a posteriori error estimates. The error is measured in a combined norm which takes into account both the primal and dual variables denoted by x and y, respectively. Our first main result is an error equality for all equations of the class ${\mathrm{A}^{*}\mathrm{A}x+x=f}$ or in mixed formulation ${\mathrm{A}^{*}y+x=f}$, ${\mathrm{A}x=y}$, where the exact solution $(x,y)$ is in $D(\mathrm{A})\times D(\mathrm{A}^{*})$. Here ${\mathrm{A}}$ is a linear, densely defined and closed (usually a differential) operator and ${\mathrm{A}^{*}}$ its adjoint. In this paper we deal with very conforming mixed approximations, i.e., we assume that the approximation ${(\tilde{x},\tilde{y})}$ belongs to ${D(\mathrm{A})\times D(\mathrm{A}^{*})}$. In order to obtain the exact global error value of this approximation one only needs the problem data and the mixed approximation itself, i.e., we have the equality$\lvert x-\tilde{x}\rvert^{2}+\lvert\mathrm{A}(x-\tilde{x})\rvert^{2}+\lvert y-% \tilde{y}\rvert^{2}+\lvert\mathrm{A}^{*}(y-\tilde{y})\rvert^{2}=\mathcal{M}(% \tilde{x},\tilde{y}),$where ${\mathcal{M}(\tilde{x},\tilde{y}):=\lvert f-\tilde{x}-\mathrm{A}^{*}\tilde{y}% \rvert^{2}+\lvert\tilde{y}-\mathrm{A}\tilde{x}\rvert^{2}}$ contains only known data. Our second main result is an error estimate for all equations of the class ${\mathrm{A}^{*}\mathrm{A}x+ix=f}$ or in mixed formulation ${\mathrm{A}^{*}y+ix=f}$, ${\mathrm{A}x=y}$, where i is the imaginary unit. For this problem we have the two-sided estimate$\frac{\sqrt{2}}{\sqrt{2}+1}\mathcal{M}_{i}(\tilde{x},\tilde{y})\leq\lvert x-% \tilde{x}\rvert^{2}+\lvert\mathrm{A}(x-\tilde{x})\rvert^{2}+\lvert y-\tilde{y}% \rvert^{2}+\lvert\mathrm{A}^{*}(y-\tilde{y})\rvert^{2}\leq\frac{\sqrt{2}}{% \sqrt{2}-1}\mathcal{M}_{i}(\tilde{x},\tilde{y}),$where ${\mathcal{M}_{i}(\tilde{x},\tilde{y}):=\lvert f-i\tilde{x}-\mathrm{A}^{*}% \tilde{y}\rvert^{2}+\lvert\tilde{y}-\mathrm{A}\tilde{x}\rvert^{2}}$ contains only known data. We will point out a motivation for the study of the latter problems by time discretizations or time-harmonic ansatz of linear partial differential equations and we will present an extensive list of applications including the reaction-diffusion problem and the eddy current problem.


2014 ◽  
Vol 33 ◽  
pp. 65-75
Author(s):  
HK Das ◽  
M Babul Hasan

In this paper, we study the methodology of primal dual solutions in Linear Programming (LP) & Linear Fractional Programming (LFP) problems. A comparative study is also made on different duals of LP & LFP. We then develop an improved decomposition approach for showing the relationship of primal and dual approach of LP & LFP problems by giving algorithm. Numerical examples are given to demonstrate our method. A computer programming code is also developed for showing primal and dual decomposition approach of LP & LFP with proper instructions using AMPL. Finally, we have drawn a conclusion stating the privilege of our method of computation. GANIT J. Bangladesh Math. Soc. Vol. 33 (2013) 65-75 DOI: http://dx.doi.org/10.3329/ganit.v33i0.17660


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 1038
Author(s):  
Han-Wen Tuan ◽  
Gino K. Yang ◽  
Kuo-Chen Hung

Inventory models must consider the probability of sub-optimal manufacturing and careless shipping to prevent the delivery of defective products to retailers. Retailers seeking to preserve a reputation of quality must also perform inspections of all items prior to sale. Inventory models that include sub-lot sampling inspections provide reasonable conditions by which to establish a lower bound and a pair of upper bounds in terms of order quantity. This should make it possible to determine the conditions of an optimal solution, which includes a unique interior solution to the problem of an order quantity satisfying the first partial derivative. The approach proposed in this paper can be used to solve the boundary. These study findings provide the analytical foundation for an inventory model that accounts for defective items and sub-lot sampling inspections. The numerical examples presented in a previous paper are used to demonstrate the derivation of an optimal solution. A counter-example is constructed to illustrate how existing iterative methods do not necessarily converge to the optimal solution.


2012 ◽  
Vol 546-547 ◽  
pp. 1360-1365
Author(s):  
Xing Xing Dai ◽  
Ling Xie ◽  
Yu Liang Mao ◽  
Chun Lei Song

Zero Velocity Update (ZUPT) is an essential method of error control in Stapdown Inertial Navigation System (SINS), which is extensively used because of its cheapness and efficiency. ZUPT uses the output of velocity error of SINS when the carrier is parking, to update the errors of other items in SINS. This method can improve the position and direction precisions of SINS. Kalman filter is chosen as the method of ZUPT to correct the velocity and position errors in SINS in this article. The method of ZUPT based on Kalman filter is applied to the vehicle experiment. The results of the vehicle experiment indicate that the ZUPT based on Kalman filter is efficient and powerful in error control, and the Kalman filter designed based on SINS is proper.


Author(s):  
A. H. Zhao

A self-correcting forwards gradient time integration procedure is formulated for the integration of a unified viscoplastic constitutive coupled with damage model for a eutectic solder alloy under cyclic fatigue loading. The procedure has been implemented numerically in the commercial finite element (FE) code ABAQUS (Version 6.2) via the user-defined material subroutine. The stress (constitutive) Jacobian explicit solution is derived. Schemes of the algorithm are verified by a series of numerical examples, including (1) Single-element simulations for uniaxial test, tensile creep, and fatigue simulations to reveal the optimum combination of the user-specified tolerance and the prescribed load step size to obtain a desired accuracy at a minimum cost. (2) Two three-dimensional analyses for monotonic tensile loading and fatigue loading were conducted for a miniature specimen of solder to show the capability of the proposed procedure to deal with thermomechanical loading. (3) Simulation of a shear notched specimen under monotonic loading was compared with the test to illustrate the ability of this algorithm for the specimen that has a serious damage region. The numerical examples illustrated that the explicit algorithm as well as empirical rule for adaptive time increment is effective for simulating cyclic thermoviscoplastic behavior of solder. The research can be applied to the simulation of viscoplasic behavior and fatigue life of softening materials.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Hongqian Lu ◽  
Chaoqun Guo ◽  
Yue Hu ◽  
Wuneng Zhou ◽  
Shihao Yan

The stability problem of networked control system (NCS) with cyberattacks and processing delay is considered under an event-triggered scheme. An improved distributed event-triggered mechanism is proposed, which optimizes the performance of system dynamics and decreases the network transmission load simultaneously. By means of Bessel–Legendre inequality method and constructing an active Lyapunov–Krasovskii functional, a series of larger upper bounds of delay are obtained corresponding to the order of N. It is worth mentioning that the upper bound increases with N, which means that the conservatism of the stability criterion lowers. Finally, a distributed event-triggered controller is designed. The validity of the results is verified by numerical examples.


Sign in / Sign up

Export Citation Format

Share Document