Performance Analysis of Amplify-and-Forward Relaying FSO/SC-QAM Systems over Weak Turbulence Channels and Pointing Error Impairments

2017 ◽  
Vol 39 (1) ◽  
Author(s):  
Ha Duyen Trung

AbstractIn this paper, the end-to-end performance of free-space optical (FSO) communication system combining with Amplify-and-Forward (AF)-assisted or fixed-gain relaying technology using subcarrier quadrature amplitude modulation (SC-QAM) over weak atmospheric turbulence channels modeled by log-normal distribution with pointing error impairments is studied. More specifically, unlike previous studies on AF relaying FSO communication systems without pointing error effects; the pointing error effect is studied by taking into account the influence of beamwidth, aperture size and jitter variance. In addition, a combination of these models to analyze the combined effect of atmospheric turbulence and pointing error to AF relaying FSO/SC-QAM systems is used. Finally, an analytical expression is derived to evaluate the average symbol error rate (ASER) performance of such systems. The numerical results show that the impact of pointing error on the performance of AF relaying FSO/SC-QAM systems and how we use proper values of aperture size and beamwidth to improve the performance of such systems. Some analytical results are confirmed by Monte-Carlo simulations.

2019 ◽  
Vol 40 (3) ◽  
pp. 323-332 ◽  
Author(s):  
Himanshu Khanna ◽  
Mona Aggarwal ◽  
Swaran Ahuja

Abstract In this paper, we investigate the performance of a decode-and-forward relayed mixed radio frequency-free space optical (RF-FSO) dual-hop link. The transmitter to receiver link’s first-hop is a RF channel and the second-hop is a FSO channel. The RF link experiences long-term shadowing and short-term multi-path fading effects, while the FSO channel suffers atmospheric turbulence fading, path loss, and pointing error-induced misalignment fading. The performance of the system is analyzed considering the impact of these parameters. We model the RF link by generalized-K fading distribution and the atmospheric turbulence over the FSO link by the gamma–gamma fading. The expressions in closed form for the outage probability, symbol error rate for the system employing $q$-ary PSK modulation schemes, and the channel capacity of the system are derived. The obtained numerical results are also depicted by numerical plots.


Author(s):  
Duong Huu Ai ◽  
Van Loi Nguyen

<span lang="EN-US">In this paper, we theoretically analyze the performance of amplify-and-forward (AF) serial relaying free-space optical (FSO) systems using avalanche photodiodes (APD) and subcarrier quadrature amplitude modulation (SC-QAM) over strong atmospheric turbulence channels modelled by gamma-gamma distribution. Closed-form expression for average bit error rate (BER) of system is theoretically derived talking into account APD shot noise, thermal noise as well as the impact of atmospheric loss and turbulence. The numerical results show that using AF relay stations can extend the transmission distance and help to improve performance of FSO system significantly when compared with the direct transmission. Moreover, the selection of APD gain value is indispensable to the system performance. The proposed system could be achieved the best performance by selecting an optimal APD gain value. In addition, the optimal value of APD gain also significantly depends on various conditions, such as link distance, the number of relay stations and APD receiver noise.</span>


Author(s):  
Maliha Sultana ◽  
Agnila Barua ◽  
Jobaida Akhtar ◽  
Mohammad Istiaque Reja

Free space optical (FSO) communication systems which are deployed for last mile access, being considered as a suitable alternative technology for optical fiber networks. It is one of the emerging technologies for broadband wireless connectivity which has also been receiving growing attention due to high data rate transmission capability with low installation cost and license free spectrum. However, the widespread use of FSO technology has been hampered by the randomly time varying characteristics of propagation path mainly due to atmospheric turbulence, sensitivity to diverse weather conditions and the nonlinear responsivity of laser diode. This paper presents the performance investigation of an OFDM-FSO system over atmospheric turbulence channels under diverse weather conditions of Bangladesh. The channel is modeled with gamma-gamma distribution using 16-QAM modulation format and 4×4 multiple transceiver FSO system. All possible challenges are imposed on the system performance such as atmospheric attenuation, turbulence, pointing error, geometric loss etc. The refractive index structure parameter and atmospheric attenuation coefficient for different weather conditions are calculated by using the data, collected from Bangladesh Meteorological Department. The acquired results can be fruitful for scheming, forecasting and assessing the OFDM-FSO system’s ability to transmit wireless services over turbulent FSO links under actual conditions of Bangladesh.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Jian Jiao ◽  
Houlian Gao ◽  
Shaohua Wu ◽  
Qinyu Zhang

Space Information Network (SIN) with backbone satellites relaying for vehicular network (VN) communications is regarded as an effective strategy to provide diverse vehicular services in a seamless, efficient, and cost-effective manner in rural areas and highways. In this paper, we investigate the performance of SIN return channel cooperative communications via an amplify-and-forward (AF) backbone satellite relaying for VN communications, where we assume that both of the source-destination and relay-destination links undergo Shadowed-Rician fading and the source-relay link follows Rician fading, respectively. In this SIN-assisted VN communication scenario, we first obtain the approximate statistical distributions of the equivalent end-to-end signal-to-noise ratio (SNR) of the system. Then, we derive the closed-form expressions to efficiently evaluate the average symbol error rate (ASER) of the system. Furthermore, the ASER expressions are taking into account the effect of satellite perturbation of the backbone relaying satellite, which reveal the accumulated error of the antenna pointing error. Finally, simulation results are provided to verify the accuracy of our theoretical analysis and show the impact of various parameters on the system performance.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Ha Duyen Trung

AbstractThis paper studies the bit error performance analysis of decode-and-forward (DF) relays-based free-space optical (FSO) communication systems using avalanche photodiode (APD). The system uses subcarrier intensity binary phase shift keying (BPSK) modulated signals and subjects to scintillation due to optical turbulence. A log-normal random process is considered to model the received signal intensity fluctuation for a clear-air condition (weak atmospheric turbulence) scenario. Mathematical expressions of the average bit error probability and bit error rate (BER) are derived by taking into account the impact of atmospheric loss, thermal-noise and shot-noise limited conditions. It can be inferred from the numerical results that using DF relay nodes can extend the transmission distance and minimize BER performance of FSO system significantly compared with the direct transmission. Moreover, the selection of APD’s gain values is essential to minimize the system’s error rate performance. Therefore, the system could achieve the minimal BER by selecting an optimal average APD gain value appropriately. Moreover, the optimal average gain values of APD significantly depend on various conditions, such as the bit rate, total transmitted power, and the number of relay nodes.


Sign in / Sign up

Export Citation Format

Share Document