A Comparative Analysis of Dual-Order Bidirectional Pumping Schemes in Optical Fiber Raman Amplification

2019 ◽  
Vol 40 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Kulwinder Singh ◽  
Manjeet Singh Patterh ◽  
Manjit Singh Bhamrah

Abstract In this paper, dual-order bidirectional pumping schemes of distributed fiber Raman amplifier are compared with standard first-order pumping in wavelength division multiplexed optical transmission systems. The novel comparison analysis is carried out in terms of Optical signal-to-noise ratio and Q-factor, on-off gain and noise figure by varying optical input power and fiber lengths. The results indicate that dual-order schemes present 0.02 dB higher OSNR and 5 dB higher Q-factor in comparison to first-order pumping when input optical power is varied from −4 to 5 dBm. Similarly, there is 4 dB higher on-off gain with dual order comparatively to first order when fiber length varied from 10 to 100 km. However, there is degradation in noise figure and Q-factor due to DRBS noise with dual-order pumping when fiber length from 10 to 100 km. Further, the signal power evolutions along fiber length show that there is 5 dBm improvement for 100 km fiber. The novelty of the work is that comparative analysis exhibits improvement in OSNR, on-off gain and Q-factor using dual-order bidirectional pumping.

2018 ◽  
Vol 39 (2) ◽  
pp. 209-214
Author(s):  
Kulwinder Singh ◽  
Manjeet Singh Patterh ◽  
Manjit Singh Bhamrah

AbstractBackward pumping in fiber Raman amplifiers has been investigated in this paper in terms of on-off Raman gain, noise figure and optical signal-to-noise ratio. The results exhibit that with four first-order pumps and one second-order pump scheme can be employed to achieve 8.2 dB noise figure in 64 channel fiber optic communication system. It has also been reported that 2.65 dB gain ripple, 0.87 dB noise figure tilt and 2.02 dB OSNR tilt can be attained with the second-order pumping in fiber Raman amplifiers. The main advantage of the scheme is that only 50 mW second-order pump shows appreciable improvement in the system performance. It shows that further increase in first-order and second-order pump powers increase system noise implications.


2019 ◽  
Vol 40 (1) ◽  
pp. 67-73 ◽  
Author(s):  
Anu Sheetal ◽  
Harjit Singh

Abstract In this paper, we analyze the performance of the 4 × 2.5 Gb/s wavelength division multiplexing (WDM) transparent metro ring network comprising of one network node and eight access nodes. Here, the power requirement of 360 km ring network has been evaluated using the optical signal to noise ratio (OSNR), Q-factor, inter-symbol interference (ISI) and power penalty. The metro network utilized the cost-effective directly modulated laser (DML) and a negative dispersion fiber called MetroCor in order to give enhanced performance in terms of Q-factor. The power requirement of the network is optimized for the signals over SMF-28 and MetroCor fibers. Also, the comparison is drawn between uncompensated and compensated (with -post and -symmetrical) SMF-28 fibers in the metro environment. The excellent value of Q-factor is obtained at all the nodes. Also, the results show higher OSNR values in the metro environment. Although, smaller power penalties are detected for nodes closer to the network node, but distant nodes require higher power for better transmission.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ruhin Chowdhury ◽  
A. K. M. Sharoar Jahan Choyon

Abstract A comprehensive design is proposed for alternate mark inversion (AMI)-encoded free-space optical (FSO) communication system by hybridizing polarization division multiplexing (PDM) with wavelength division multiplexing (WDM) and its performance is investigated under diverse weather conditions. The WDM transmitter comprises eight channels transmitting 320 Gbps data over the atmospheric turbulent channel considering gamma–gamma (G–G) distribution for the FSO channel model. A PDM-WDM technique not only maximizes the link capacity of the FSO system but also enhances the spectral efficiency (SE) of the system. Besides, the proposed hybrid AMI-PDM-WDM FSO system performance is compared with the traditional AMI-WDM-PDM and AMI-WDM models to demonstrate the advantages of our proposed model for the design of FSO link. It is observed that our proposed hybrid system exhibits excellent performance under diverse weather conditions over the traditional models in terms of Q factor, received optical power, bit error rate (BER), eye diagrams and optical signal-to-noise ratio (OSNR).


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
I. S. Amiri ◽  
Fatma Mohammed Aref Mahmoud Houssien ◽  
Ahmed Nabih Zaki Rashed ◽  
Abd El-Naser A. Mohammed

AbstractThe 16-channels dense wavelength division multiplexing (DWDM) systems have been optimized by utilizing hybrid configurations of conventional optical fiber amplifiers (EDFA, RAMAN and SOA) and optical photodetectors (PIN, APD(Si) and APD(InGaAs)). The DWDM systems were implemented for 5 Gb/s channel speed using one of these configurations with 100 GHz channel spacing and 25 km amplifying section. The hybrid configurations are the combinations of (PIN + EDFA), (PIN + RAMAN), (PIN + SOA), (APD(Si) + EDFA), (APD(Si) + RAMAN), (APD(Si) + SOA), (APD(InGaAs) + EDFA), (APD(InGaAs) + RAMAN) and (APD(InGaAs) + SOA). Based on BER, Q-factor and eye diagrams, the performance was compared for these configurations under influences of various thermal noise levels of photodetectors over different fiber lengths ranging from 25 km up to 150 km. The results revealed that both APD structures give optimum performance at input power Pin = 5 dBm due to high internal avalanche gain. EDFA outperforms RAMAN and SOA amplifiers. SOA amplifier shows degraded performance because of nonlinearity effects induced. RAMAN amplifier seems to be the best alternative for long reach DWDM systems because it minimizes the effects of fiber nonlinearities. The configuration (APD(Si) + EDFA) is the most efficient and recommended to be used for transmission distance beyond 100 km due to its larger Q-factor.


Author(s):  
Anurupa Lubana ◽  
Sanmukh Kaur

In this paper, we present a novel erbium–ytterbium doped fiber amplifier (EYDFA) + Raman + EYDFA hybrid optical amplifier (HOA) for a super-dense wavelength division multiplexing (SD-WDM) system application. The performance of the 100-channel system has been investigated for an overall data rate and channel spacing of 100[Formula: see text]Gb/s and 0.4[Formula: see text]nm, respectively, over a wavelength span of 1550–1589.9[Formula: see text]nm. HOA has been optimized for Raman length, EYDFA lengths, pump powers and Er[Formula: see text] concentrations to achieve high average gain and low gain variation ratio of 40.41[Formula: see text]dB and 0.40[Formula: see text]respectively. The optimized configuration of the proposed HOA has been compared with EYDFA + Raman and Raman + EYDFA HOA configurations. The achieved high and flat gain with an acceptable output optical signal to noise ratio (OSNR) in case of EYDFA + Raman + EYDFA HOA; makes it an optimum choice for SD-WDM systems.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Deepak Malik ◽  
Amit Wason

AbstractIn this paper, a competent flat gain hybrid optical amplifier is proposed with an optimum arrangement of erbium doped fiber amplifier (EDFA) and Raman amplifier. Attempts are made to design a hybrid optical amplifier for100 channels, 10 Gbps super dense wavelength division multiplexed (SDWDM) systems at channel spacing of 0.1 nm. Work capacity of the system was compared on the basis of various parameters, viz., noise figure and gain that determined the performance of the system. The gain spectrum of the hybrid optical amplifier depends upon the parameters viz., laser input power, pump power and pump wavelength of the amplifier. It was found that for wavelength range 1,560.38–1,579.59 nm, a flat gain of 4.34 dB is achieved for input power of −10 dB with noise figure variation of 0.818 dB without using any gain flattering scheme. Being simple and cost effective, this hybrid optical amplifier could be recommended for gain flatness characteristics and acceptable noise figure for dense wavelength multiplexed systems.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Namita Kathpal ◽  
Amit Kumar Garg

AbstractIt is known that the high bandwidth demands are accomplished by deploying the concept of wavelength division multiplexing in optical networks which involves the transmission of multiple wavelength signals spaced very close to each other. Due to closely spaced wavelengths, the signal power of one channel phase modulates the adjacent channel which in turn produces nonlinear effects such as cross-phase modulation (XPM), self-phase modulation (SPM) and four-wave mixing (FWM). Thus, in this paper, PC-DCF (pre-compensating dispersion compensating fiber) technique has been demonstrated and evaluated in the transmission link to compensate the XPM effects, and this result seems to significantly enhance w.r.t. transmission performance and system capacity considering performance metrics such as Optical Signal to Noise Ratio (OSNR), bit rate, Q-factor and bit error rate (BER). It is evident from the simulation results as well as through mathematical modeling that the proposed technique (PC-DCF) provides optimum results at the channel spacing of 100 GHz, bit rate of 10 Gbps and input power of 5 mW which collectively provides a 5 dB increase in OSNR as compared to the existing compensating technique.


Author(s):  
Muhammad Syauqi Kusyairi Bin Jamalus ◽  
Nelidya Md. Yusoff ◽  
Abdul Hadi Sulaiman

<span>This paper shows dual stage thulium-doped fiber amplifiers (TDFAs) that use a pump power distribution technique. Simulations were done with signals ranging from 1975 nm to 2000 nm using the OptiSystem v.13 software. The results required were gathered from the software. The results of gain, noise figure, optical signal-to-noise ratio (OSNR) and output power were obtained. The highest gain and lowest noise figure results were achieved for the double pass dual stage TDFA configuration with values of 19.85 dB and 5.58 dB respectively, followed by the single pass dual stage TDFA. The OSNR and output power performances were also better for the double pass dual stage TDFA, obtaining 57.12 dB and 19.55 dBm respectively. This study shows that thulium can be used in the 2 µm region as an active gain medium and the dual stage architecture and distributed pumping technique proves to be effective techniques to obtain the desired results. Experimental work will be done in the future with the simulated results used as a reference.</span>


2019 ◽  
Vol 24 (5) ◽  
pp. 115
Author(s):  
Humam Husseinˡ ◽  
Dogu Cagdas Atilla1 ◽  
Essa Essa2 ◽  
Cagatay Aydin1

In recent years, there has been a growing and continuous demand for great (data rates) beyond existing wired and wireless networks. Radio-over-Fiber technology is considered as an efficient and practical solution for providing broadband wireless. In this paper, many techniques are used to implement a system that has the capability to provide a great bit rate, broadband bandwidth, and minimum cost. So Radio-over-Fiber technology was used to modulate the light with radio-signal and transmission the signals through an optical fiber cable. Wavelength-Division-Multiplexing technique was used to send many signals through the same link, and Subcarrier Multiplexing-Amplitude Shift keying as a modulation format. 2Gpbs separate on two channels was transmitted on Single-Mode Fiber. The average results obtained from our experience was as follows: maximum Q factor average = 4.9712925, minimum BER average = 3.63*10-7, total power average (dBm) = -51.1502, the OSNR average (dB) = 52.085 for channel_1. The results of channel_2 were: maximum Q factor average = 5.5901325, minimum BER average = 1.26*10-8, total power average (dBm) = -46.60135, the average of optical signal-to-noise ratio (dB) = 54.65. All the average result that has from our simulation was very good and acceptable. The simulation and performance test of our experience was done using Optisystem 7.0.   http://dx.doi.org/10.25130/tjps.24.2019.100


Sign in / Sign up

Export Citation Format

Share Document