The performance comparison of hybrid WDM/TDM, TDM and WDM PONs with 128 ONUs

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Hadjira Hamadouche ◽  
Boualem Merabet ◽  
Mouweffeq Bouregaa

AbstractHere, we have simulated different unidirectional passive optical networks (PONs) technologies such as wavelength division multiplexing (WDM), time-division multiplexing (TDM) and hybridPONs with different users for varying fiber length, data rate, continuous wave laser power and number of users. Their performances based on the quality-factor (Q-factor) and bit error rate (BER) using OptiSystem software 7.0 with using an Erbium doped-fiber amplifier (EDFA) were compared. Our model used 16 and 128 users, where the performance of the unidirectional Hybrid WDM/TDM PONs with 4 wavelengths and 128 user systems have better high Q-factor and lower BER, compared to that of 128 user WDM PON and 128 user TDM PON systems.

2019 ◽  
Vol 40 (2) ◽  
pp. 101-107 ◽  
Author(s):  
Deepti Ahlawat ◽  
Payal Arora ◽  
Suresh Kumar

Abstract Analysis of wavelength division multiplexing (WDM) system utilizing erbium-doped fiber amplifier (EDFA) has been carried out by many researchers. In this paper, the performance analysis of 8-channel WDM system utilizing EDFA and fiber Bragg grating (FBG) combination is carried out in a wavelength band 1546–1552 nm at 10 Gbps. The performance of three apodization functions (Uniform, Gaussian and Tanh) of FBG is compared using return-to-zero (RZ) and non-return-to-zero modulation formats at fiber lengths 50, 60, 70 and 80 km. Also, the performance of FBG is compared for both aspects: with chirp and without chirp for grating lengths 5–10 mm. The Gaussian apodized and linearly chirped FBG outperformed the other two in compensating chromatic dispersion. Optimum values of Q-factor are also obtained using linearly chirped FBG with RZ modulation format at 10 mm of grating length.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Suraj Jain ◽  
Chakresh Kumar

AbstractThis paper aims to analyze the performance of FBG 60 channel wavelength-division multiplexing system using different optical amplifiers namely RAMAN, erbium-doped fiber amplifier (EDFA) and semiconductor optical amplifier (SOA) separately at 10 Gbps data rate up to a fiber length of 280 km. Based upon the results, the performance of the three amplifiers has been compared on the basis of multiple performance parameters. It is seen that EDFA simulates good results in terms of bit error rate (BER) up to a fiber distance of approximately 80 km and Q factor up to a distance of approximately 90 km among all the three amplifiers. However, power received is least in EDFA. RAMAN amplifier provides a better Q factor after the fiber distance of approximately 90 km and a better BER after the fiber distance of approximately 80 km compared to the other three amplifiers. SOA shows better results in terms of power received up to a fiber distance of approximately 100 km. RAMAN amplifier provides better output power after a distance of 100 km. Eye diagrams and power spectrums of the network with different optical amplifiers has also been analyzed.


2019 ◽  
Vol 19 (1) ◽  
pp. 13 ◽  
Author(s):  
Akhmad Hambali ◽  
Brian Pamukti

In this research, we propose hybrid Coarse Wavelength Division Multiplexing/Time Division Multiplexing (CWDM/TDM)-Passive Optical Networks (PON) scheme for optimizing the new technology of Gigabit-PON (GPON) called Next Generation-PON Stage 2 (NG-PON2). The simulation of using this scheme proved that Q-Factor increase and Bit Error Rate (BER) decreased, significantly. We use CWDM scheme for downstream while TDM is used for upstream, and we assimilate both of them with new configuration in bidirectional cable setting. CWDM is used due to low nonlinearity effect like Kerr effects. It has the same working principle based on (Time Wavelength Division Multiplexing-PON) TWDM-PON by differentiating the use of wavelength, it can be easily implemented on existing PON technology, and can be used in single-mode optical fiber (SMF) with greater bandwidth and much cheaper operational costs. From the calculations and simulations, it can be analyzed that the network Hybrid of CWDM / TDM-PON able to work on bit rate of 40/10 Gbps on the number of users 32, 64, and 128, with Q-Factor value is above 6 equal to International Telecommunication Union of Telecommunication (ITU-T) standard. The number of users 32 with two cable lengths of 10 and 20 km have value of Q-Factor 25.960 and 14.815 respectively, while64 users with the same cable length have Q-Factor value of 15.808 and 13.046 respectively. In addition, 128 users with the same cable length have BER value of 17.778 and 12.944 respectively.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
I. S. Amiri ◽  
Fatma Mohammed Aref Mahmoud Houssien ◽  
Ahmed Nabih Zaki Rashed ◽  
Abd El-Naser A. Mohammed

AbstractThe 16-channels dense wavelength division multiplexing (DWDM) systems have been optimized by utilizing hybrid configurations of conventional optical fiber amplifiers (EDFA, RAMAN and SOA) and optical photodetectors (PIN, APD(Si) and APD(InGaAs)). The DWDM systems were implemented for 5 Gb/s channel speed using one of these configurations with 100 GHz channel spacing and 25 km amplifying section. The hybrid configurations are the combinations of (PIN + EDFA), (PIN + RAMAN), (PIN + SOA), (APD(Si) + EDFA), (APD(Si) + RAMAN), (APD(Si) + SOA), (APD(InGaAs) + EDFA), (APD(InGaAs) + RAMAN) and (APD(InGaAs) + SOA). Based on BER, Q-factor and eye diagrams, the performance was compared for these configurations under influences of various thermal noise levels of photodetectors over different fiber lengths ranging from 25 km up to 150 km. The results revealed that both APD structures give optimum performance at input power Pin = 5 dBm due to high internal avalanche gain. EDFA outperforms RAMAN and SOA amplifiers. SOA amplifier shows degraded performance because of nonlinearity effects induced. RAMAN amplifier seems to be the best alternative for long reach DWDM systems because it minimizes the effects of fiber nonlinearities. The configuration (APD(Si) + EDFA) is the most efficient and recommended to be used for transmission distance beyond 100 km due to its larger Q-factor.


2019 ◽  
Vol 40 (4) ◽  
pp. 341-346
Author(s):  
Kulwinder Singh ◽  
Karan Goel ◽  
Kamaljit Singh Bhatia ◽  
Hardeep Singh Ryait

Abstract Different fiber amplifiers such as semiconductor optical amplifier, erbium-doped fiber amplifier and erbium ytterbium-co-doped fiber amplifier (EYCDFA) are investigated for 16×40 GB/s wavelength division multiplexing system. Various performance parameters including Q-factor, bit error rate, jitter, eye opening and eye closure are observed and analyzed. It is reported that EYCDFA is a better choice among the tested amplifiers. The proposed system is also investigated in terms of transmission distance.


2017 ◽  
Vol 38 (1) ◽  
Author(s):  
Hsiu-Sheng Lin ◽  
Po-Chou Lai

AbstractWe propose the experiment transport of 48 Chs 40 Gb/s dense wavelength division multiplexing (DWDM) system that uses larger effective area fiber (LEAF) in combination with reverse dispersion fiber (RDF), which is a dispersion compensation device, in C band (1,530–1,560 nm) and L band (1,570–1,610 nm) wavelength range to solve the dispersion program. The single Mach–Zehnder modulation (MZM) format with erbium-doped fiber amplifier (EDFA) configuration to generate return-to-zero differential phase-shift keying (RZ-DPSK) modulation signal can compensate dispersion impairment in 48×40 Gb/s DWDM system. The proposed 48×40 Gb/s DWDM system successfully employs single MZM RZ-DPSK modulation format to reduce modulation complex configuration with EDFA to promote the power signal and using LEAF and RDF in 28 spans over 3,360 km ultra-long-haul fiber transmission successfully.


Author(s):  
S. Semmalar ◽  
S. Malarkkan

Proposed the EDFA and EYCDFA power booster (Erbium Doped Fiber Amplifier- Erbium ytterbium co doped fiber amplifier) with quad pumping for high speed and multi wavelength services in an optical communication. The proposed EDFA and EYCDFA power booster with WDM(Wavelength division multiplexing) simulated by dual forward and Backward pumping, Dual-backward pumping, Tri-single forward and dual backward pumping and Quadsingle forward and tri-backward pumping with respect to Pump power and fiber Length. The parameters Input Optical power, Output Optical power, Forward Signal power, Backward Signal power measured and determined the speed of transmission in all types of pumping methods. From that the proposed EDFA- ans EYCDFA power booster with WDM quad pumping is the best suitable for secured high speed optical telecommunication systems. The results shown in Quad pumping Output optical power is maximum 25.2dB and optimum spectral forward Signal power is 30.5dBm and very less spectral optical backward signal power of -25.4dBm with Length 5m


2017 ◽  
Vol 38 (2) ◽  
Author(s):  
Garima Arora ◽  
Sanjeev Dewra

AbstractThis paper presents the comparison of various modulation formats for 64×10 Gbps dense wavelength division multiplexing system using Raman–erbium-doped fiber amplifier optical amplifier with 100 GHz interval. We evaluate the suitability of various data formats like return-to-zero (RZ) raised cosine (RC), RZ rectangular (Rect), non-return-to-zero (NRZ) RC and NRZ-Rect for an optical transmission link. The results have been carried out by evaluating the value of quality factor, bit error rate (BER) and average opening of an eye. It is found that using NRZ-Rect data format, the signal can travel up to transmission length of 234 km with acceptable BER (1.10e


2015 ◽  
Vol 36 (2) ◽  
Author(s):  
N. Ahmed ◽  
Hilal A. Fadhil ◽  
S. A. Aljunid ◽  
Md. Sharafat Ali ◽  
Matiur Rahman

AbstractIn this paper, the performance of wavelength division multiplexing-passive optical network (WDM-PON) system using the erbium-doped fiber amplifier (EDFA) is optimized and evaluated. The optimization is analyzed by finding the EDFA length range at which the output power produced are the highest and the pump power range at which the gain flatness produced are within the effective range (0.3 dB). After the optimization process, the optimized EDFA system produces the gain of 26.6±0.292 dB, noise figure of 3.82 dB and output power of 7 dBm and the system is then implemented into WDM system. The performance of WDM system is compared against the system without EDFA in terms of bit error rate (BER). Results obtained prove that the proposed system with the EDFA consistently performs better than the conventional system.


Sign in / Sign up

Export Citation Format

Share Document