Multi-input single-output (MISO) all optical logic (ALG) AND/NOR gate using FWM in dispersion compensation fibers in Mach-Zehnder configuration (DCF-MZI)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Deepti Sharma ◽  
Charanjit Singh ◽  
Rajbir Kaur

Abstract Ultrafast all optical computing is getting attention for future generation services and all optical logic gates are basic building block for the photonic circuits in processing units. In this work, a multi-input single-output all optical AND/NOR gates are proposed using dispersion compensation fibers in Mach-Zehnder configuration (DCFs-MZI). Four wave mixing effect emerges in DCF and due to Kerr’s effect, aforementioned gates are realized at 10.2 Gbps. A low power logic gates with >23 dB extinction ratio are achieved and performance analysis is performed in terms of Q factor.

2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Devendra Kr. Tripathi

AbstractAll optical logic gates are the key elements of contemporary optical computing unit. For that non-linear attribute of reflective semiconductor optical amplifier (RSOA) is exploited to configure optical logic gates. Accordingly, in the manuscript all optical OR/NOR/Buffer binary logic network for the nonreturn to zero format has been designed. Its operation at 100 Gbps data rate has been successfully realized. For the applied data inputs in nonreturn to zero patterns, their corresponding output waveforms for the stated logic action have been verified. Numerical investigations for the imperative design constraints as data rate, injected power and imperative elements of the semiconductor optical amplifiers (SOAs) pump current, carrier density, active length, confine factor, laser power has been appropriately executed with optimum performance. It has depicted good extinction ratio (>10 dB) performance with confine factor more than 0.2 and higher carrier density of amplifier. Further, it also accomplished, that for the OR, buffer logic execution with lower power of pump laser and for the NOR logic execution higher power laser pump source is required. The proposed design could fulfill need for the impending higher data rate composite optical computing units.


2021 ◽  
Author(s):  
Ipshitha Charles ◽  
Alluru Sreev ◽  
SabbiVamshi Krishna ◽  
Sandip Swarnakar ◽  
Santosh Kumar

Abstract In this digital era, all-optical logic gates (OLGs) proved its effectiveness in execution of high-speed computations. A unique construction of an all-optical OR, NOR, NAND gates based on the notion of power combiner employing metal–insulator–metal (MIM) waveguide in the Y-shape in a minimal imprint of 6.2 µm × 3 µm is presented and the structure is evaluated by finite-difference time-domain (FDTD) technique. The insertion loss (IL) and extinction-ratio (ER) for proposed model are 6 dB and 27.76 dB for NAND gate, 2 dB and 20.35 dB for NOR gate and 6 dB and 24.10 dB respectively. The simplified model is used in the construction of complex circuits to achieve greater efficiency, which contributes to the emergence of a new technique for designing plasmonic integrated circuits.


2021 ◽  
Author(s):  
Ipshitha Charles ◽  
Alluru Sreev ◽  
SabbiVamshi Krishna ◽  
Sandip Swarnakar ◽  
Santosh Kumar

Abstract In this digital era, all-optical logic gates (OLGs) proved its effectiveness in execution of high-speed computations. A unique construction for all optical NAND gate based on the notion of power combiner employing metal–insulator–metal (MIM) waveguide in the Y-shape in a minimal imprint of 6.2 µm × 3 µm is presented and the structure is evaluated by finite-difference time-domain (FDTD) technique. The insertion loss (IL) and extinction-ratio (ER) for proposed model are 6 dB and 27.76 dB. The simplified model is used in the construction of complex circuits to achieve greater efficiency, which contributes to the emergence of a new technique for designing plasmonic integrated circuits.


2021 ◽  
Author(s):  
Surya Pavan Kumar Anguluri ◽  
Srinivas Raja Banda ◽  
Sabbi Vamshi Krishna ◽  
Sandip Swarnakar ◽  
Santosh Kumar

Abstract All-optical logic gates have proven their significance in the digital world using which all high-speed computations are calculated. In this paper, we have proposed a novel structure for all-optical AND using the concept of power combiner using Y-shaped metal-insulator-metal waveguide under the footprints of A. This design works under the principle of linear interference. The insertion loss and extinction ratio of the design are given by 0.165 dB and 14.11 dB, respectively. The analysis of the design is carried out by finite-difference-time-domain (FDTD) method and verified using MATLAB. This minimized structure can be used to design any complex logic circuits to achieve better performance in future.


Author(s):  
Nguyen Van Tai

In this paper, we propose and investigate some designs of basic plasmonic logic gates in two dimensional plasmonic waveguides with nanotube metal-insulator-metal waveguides using the numerical method of eigenmode expansion. These gates, including XOR, OR, NOT, and Feynman gate can be realized by changing geometrical parameters properly. Also, by cascading and combining these basic logic gates, any complex logic function can also be obtained providing the highly integrated optical logic circuits. The proposed logic gates have the broadband up to 300 nm and only spend the compact size as much as 2 µm×1.2 µm. Thus, the devices can be applied widely and significantly in optical computing and processing devices.


2020 ◽  
Vol 10 (4) ◽  
pp. 369-380
Author(s):  
K. Maji ◽  
K. Mukherjee ◽  
A. Raja

All optical tri-state frequency encoded logic gates NOT and NAND are proposed and numerically investigated using TOAD based interferometric switch for the first time to the best of our knowledge. The optical power spectrum, extinction ratio, contrast ration, and amplified spontaneous noise are calculated to analyze and confirm practical feasibility of the gates. The proposed device works for low switching energy and has high contrast and extinction ratio as indicated in this work.


2005 ◽  
Vol 41 (7) ◽  
pp. 435 ◽  
Author(s):  
A. Bogoni ◽  
L. Potì ◽  
R. Proietti ◽  
G. Meloni ◽  
F. Ponzini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document