scholarly journals All optical logic gates based on nanoplasmonic MIM waveguides

Author(s):  
Nguyen Van Tai

In this paper, we propose and investigate some designs of basic plasmonic logic gates in two dimensional plasmonic waveguides with nanotube metal-insulator-metal waveguides using the numerical method of eigenmode expansion. These gates, including XOR, OR, NOT, and Feynman gate can be realized by changing geometrical parameters properly. Also, by cascading and combining these basic logic gates, any complex logic function can also be obtained providing the highly integrated optical logic circuits. The proposed logic gates have the broadband up to 300 nm and only spend the compact size as much as 2 µm×1.2 µm. Thus, the devices can be applied widely and significantly in optical computing and processing devices.

2018 ◽  
Vol 32 (02) ◽  
pp. 1850008 ◽  
Author(s):  
Luna Cui ◽  
Li Yu

Nano-scale Multifunctional Logic Gates based on Si hybrid plasmonic waveguides (HPWGs) are designed by utilizing the multimode interference (MMI) effect. The proposed device is composed of three input waveguides, three output waveguides and an MMI waveguide. The functional size of the device is only 1000 nm × 3200 nm, which is much smaller than traditional Si-based all-optical logic gates. By setting different input signals and selecting suitable threshold value, OR, AND, XOR and NOT gates are achieved simultaneously or individually in a single device. This may provide a way for ultrahigh speed signal processing and future nanophotonic integrated circuits.


2021 ◽  
Author(s):  
Ipshitha Charles ◽  
Alluru Sreev ◽  
SabbiVamshi Krishna ◽  
Sandip Swarnakar ◽  
Santosh Kumar

Abstract In this digital era, all-optical logic gates (OLGs) proved its effectiveness in execution of high-speed computations. A unique construction of an all-optical OR, NOR, NAND gates based on the notion of power combiner employing metal–insulator–metal (MIM) waveguide in the Y-shape in a minimal imprint of 6.2 µm × 3 µm is presented and the structure is evaluated by finite-difference time-domain (FDTD) technique. The insertion loss (IL) and extinction-ratio (ER) for proposed model are 6 dB and 27.76 dB for NAND gate, 2 dB and 20.35 dB for NOR gate and 6 dB and 24.10 dB respectively. The simplified model is used in the construction of complex circuits to achieve greater efficiency, which contributes to the emergence of a new technique for designing plasmonic integrated circuits.


2016 ◽  
Vol 30 (05) ◽  
pp. 1650045 ◽  
Author(s):  
Lin Sun ◽  
Jicheng Wang ◽  
Zheng-Da Hu ◽  
Xiaosai Wang ◽  
Jing Chen

In this paper, electromagnetically-induced transparency (EIT) phenomena have been investigated numerically in the plasmonic waveguides composed of unsymmetrical slot shaped metal–insulator–metal (MIM) structures. By the transmission line theory and Fabry–Perot model, the formation and evolution mechanisms of plasmon-induced transparency were exactly analyzed. The analysis showed that the peak of EIT-like transmission could be changed easily according to certain rules by adjusting the geometrical parameters of the slot structures, including the coupling distances and slot depths. We can find a new method to design nanoscale optical switch, devices in optical storage and optical computing.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Devendra Kr. Tripathi

AbstractAll optical logic gates are the key elements of contemporary optical computing unit. For that non-linear attribute of reflective semiconductor optical amplifier (RSOA) is exploited to configure optical logic gates. Accordingly, in the manuscript all optical OR/NOR/Buffer binary logic network for the nonreturn to zero format has been designed. Its operation at 100 Gbps data rate has been successfully realized. For the applied data inputs in nonreturn to zero patterns, their corresponding output waveforms for the stated logic action have been verified. Numerical investigations for the imperative design constraints as data rate, injected power and imperative elements of the semiconductor optical amplifiers (SOAs) pump current, carrier density, active length, confine factor, laser power has been appropriately executed with optimum performance. It has depicted good extinction ratio (>10 dB) performance with confine factor more than 0.2 and higher carrier density of amplifier. Further, it also accomplished, that for the OR, buffer logic execution with lower power of pump laser and for the NOR logic execution higher power laser pump source is required. The proposed design could fulfill need for the impending higher data rate composite optical computing units.


Author(s):  
Prapas Phongsanam ◽  
Preecha Yupapin

Optical micro-ring resonators (MRRs) element can be used in many applications. This paper we propose a photonics circuit design based on optical tree architecture (OTA) for all-optical elements by using the modified add-drop filter for an all-optical arithmetic logic unit (ALU) aimed for computing applications system. All-optical 2x4 decoder, all-optical comparator, all-optical half adder, all-optical half subtractor, all-optical full adder, all-optical full subtractor and proposed new design all-optical 4x16 decoder were proposed. We have studied the nonlinear effect in the modified add-drop filter system, which is control by injected the nonlinear pulses on top as an input for generated all-optical logic and arithmetic operations simultaneously at the through and drop port of modified add-drop filter. The optical input and control field of the modified add-drop filter circuit can be formed by nonlinear dark and bright pluses. The obtained simulation results have shown that the nonlinear pulse generated by the nonlinear modified add-drop filter can control the output consistency, which is important when the interconnect between each circuit output parts are required. The advantages of the modified add-drop filter are low power, ultra-fast switching, tuneable and high security which is compact size and footprint. It is suitable for the next generation of all-optical small-scale device and all-optical computing system requirements.


2018 ◽  
Vol 7 (4) ◽  
pp. 2818
Author(s):  
Hassan Falah Fakhruldeen ◽  
Tahreer Safaa Mansour

In this work, all-optical plasmonic NOT logic gate was proposed by using metal-insulator-metal (MIM) plasmonic waveguides design. This logic gate is numerically analyzed by COMSOL Multiphysics 5.3a. Recently, plasmonics have attracted more attention due to its huge applications in all optical signal processing. Due to it’s highly localization to metallic surfaces, surface plasmon (SP) may have many applications in sub wavelength to guide the optical signal in waveguides to overcome the diffraction limit which considered a big problem in conventional optics. The proposed design of MIM structure is consist of a dielectric waveguides plus metallic claddings, which guide the incident light strongly in the insulator region. Strong localization and relatively simple fabrication make the MIM waveguides the potential key design of Nano-scale all optical devices. Our design consists of symmetric ring structures with straight waveguides which based on MIM structure. All-optical logic gate (NOT gate) behavior is achieved from utilizing the interface between straight waveguides and ring structure waveguides. By switching the activation of the control port, the propagation of the outgoing field in the output waveguide will be changed. As the simulation results show, the proposed structure could operate as an all-optical NOT logic gate. This gate would be a potential component in many applications of all-optical signals processing.  


2021 ◽  
Author(s):  
Ipshitha Charles ◽  
Alluru Sreev ◽  
SabbiVamshi Krishna ◽  
Sandip Swarnakar ◽  
Santosh Kumar

Abstract In this digital era, all-optical logic gates (OLGs) proved its effectiveness in execution of high-speed computations. A unique construction for all optical NAND gate based on the notion of power combiner employing metal–insulator–metal (MIM) waveguide in the Y-shape in a minimal imprint of 6.2 µm × 3 µm is presented and the structure is evaluated by finite-difference time-domain (FDTD) technique. The insertion loss (IL) and extinction-ratio (ER) for proposed model are 6 dB and 27.76 dB. The simplified model is used in the construction of complex circuits to achieve greater efficiency, which contributes to the emergence of a new technique for designing plasmonic integrated circuits.


Sign in / Sign up

Export Citation Format

Share Document