Sertoli cell only syndrome with ambiguous genitalia

Author(s):  
Fatih Gurbuz ◽  
Serdar Ceylaner ◽  
Seyda Erdogan ◽  
Ali Kemal Topaloglu ◽  
Bilgin Yuksel

AbstractThe Sertoli cell only syndrome (SCOS) is a rare genetic disorder with a variable phenotype ranging from a severe ambiguous genitalia to a normal male phenotype with infertility. SCOS is diagnosed on testicular histopathology as germ cells are absent without histological impairment of Sertoli or Leydig cells. The

2008 ◽  
Vol 20 (4) ◽  
pp. 505 ◽  
Author(s):  
A. Wagner ◽  
R. Claus

Oestrogens and glucocorticoids are important for spermatogenesis and are regulated via aromatase for oestradiol synthesis and 11β-hydroxysteroid dehydrogenase 2 (11β-HSD 2) as an inactivator of cortisol. In the present study postnatal changes of these two enzymes were monitored together with testicular development and hormone concentrations. Pigs were assigned to three periods: Weeks 0–5, Weeks 5–11 or Weeks 11–17. In Period 1, groups of four piglets were killed after each week. Blood plasma and testes were sampled immediately post mortem. For Periods 2 and 3, groups of six pigs were fitted with vein catheters for daily blood collection. Testes from all pigs were obtained after killing. Levels of testosterone, oestradiol, LH, FSH and cortisol were determined radioimmunologically. The 11β-HSD 2- and aromatase-expressing cells were stained immunocytochemically. All hormones were maximal 2 weeks after birth. A rise of LH, testosterone and oestradiol occurred again at Week 17. FSH and cortisol remained basal. Parallel to the first postnatal rise, the presence of aromatase and 11β-HSD 2 in Leydig cells increased, together with germ and Sertoli cell numbers. Expression was low from 3 to 5 weeks, was resumed after Week 5 and was maximal at Week 17. The amount of 11β-HSD 2 in germ cells was greatest at birth, decreased thereafter and was absent after Week 3.


2021 ◽  
pp. 1-4
Author(s):  
Angie Carolina Carreño-Martínez ◽  
Victor Clemente Mendoza Rojas ◽  
Julian Arturo Gil Forero ◽  
Victor Hugo Figueroa ◽  
Gustavo Adolfo Contreras-García

Mixed gonadal dysgenesis is the most common chromosomal abnormality with ambiguous genitalia, defined as a 45,X/46,XY mosaicism. It can present with a normal male phenotype, ambiguous genitalia, or features of Turner syndrome. A 14-year-old patient was referred to the genetics clinic due to hypospadia, cryptorchidism, and aortic coarctation. During the physical examination, short stature, webbed neck, and Blashko lines on his back were noted. He had a previous karyotype reported as normal. However, due to an inadequate evolution and a low resolution on the previous test, a higher resolution karyotype was performed, identifying a mosaicism 45,X/46,XY. A multidisciplinary board examined the case, and follow-up with tumor markers was carried out to evaluate the presence of gonadoblastoma, one of the main complications in these patients. Treatment should be transdisciplinary and focused on the particular characteristics of each case. Other treatment alternatives include corrective surgery and hormonal therapy.


2009 ◽  
Vol 30 (2) ◽  
pp. 119-132 ◽  
Author(s):  
Ruey-Sheng Wang ◽  
Shuyuan Yeh ◽  
Chii-Ruey Tzeng ◽  
Chawnshang Chang

Abstract Androgens are critical steroid hormones that determine the expression of the male phenotype, including the outward development of secondary sex characteristics as well as the initiation and maintenance of spermatogenesis. Their actions are mediated by the androgen receptor (AR), a member of the nuclear receptor superfamily. AR functions as a ligand-dependent transcription factor, regulating expression of an array of androgen-responsive genes. Androgen and the AR play important roles in male spermatogenesis and fertility. The recent generation and characterization of male total and conditional AR knockout mice from different laboratories demonstrated the necessity of AR signaling for both external and internal male phenotype development. As expected, the male total AR knockout mice exhibited female-typical external appearance (including a vagina with a blind end and a clitoris-like phallus), the testis was located abdominally, and germ cell development was severely disrupted, which was similar to a human complete androgen insensitivity syndrome or testicular feminization mouse. However, the process of spermatogenesis is highly dependent on autocrine and paracrine communication among testicular cell types, and the disruption of AR throughout an experimental animal cannot answer the question about how AR in each type of testicular cell can play roles in the process of spermatogenesis. In this review, we provide new insights by comparing the results of cell-specific AR knockout in germ cells, peritubular myoid cells, Leydig cells, and Sertoli cells mouse models that were generated by different laboratories to see the consequent defects in spermatogenesis due to AR loss in different testicular cell types in spermatogenesis. Briefly, this review summarizes these results as follows: 1) the impact of lacking AR in Sertoli cells mainly affects Sertoli cell functions to support and nurture germ cells, leading to spermatogenesis arrest at the diplotene primary spermatocyte stage prior to the accomplishment of first meiotic division; 2) the impact of lacking AR in Leydig cells mainly affects steroidogenic functions leading to arrest of spermatogenesis at the round spermatid stage; 3) the impact of lacking AR in the smooth muscle cells and peritubular myoid cells in mice results in similar fertility despite decreased sperm output as compared to wild-type controls; and 4) the deletion of AR gene in mouse germ cells does not affect spermatogenesis and male fertility. This review tries to clarify the useful information regarding how androgen/AR functions in individual cells of the testis. The future studies of detailed molecular mechanisms in these in vivo animals with cell-specific AR knockout could possibly lead to useful insights for improvements in the treatment of male infertility, hypogonadism, and testicular dysgenesis syndrome, and in attempts to create safe as well as effective male contraceptive methods.


2016 ◽  
Vol 311 (2) ◽  
pp. E396-E404 ◽  
Author(s):  
Rasmani Hazra ◽  
Dannielle Upton ◽  
Reena Desai ◽  
Omar Noori ◽  
Mark Jimenez ◽  
...  

Recently, we created a unique gain-of-function mouse model with Sertoli cell-specific transgenic androgen receptor expression (TgSCAR) showing that SCAR activity controls the synchronized postnatal development of somatic Sertoli and Leydig cells and meiotic-postmeiotic germ cells. Moderate TgSCAR (TgSCARm) expression reduced testis size but had no effect on male fertility. Here, we reveal that higher TgSCAR expression (TgSCARH) causes male infertility. Higher SCAR activity, shown by upregulated AR-dependent transcripts ( Rhox5, Spinw1), resulted in smaller adult TgSCARH testes (50% of normal) despite normal or elevated circulating and intratesticular testosterone levels. Unlike fertile TgSCARm males, testes of adult TgSCARH males exhibited focal regions of interstitial hypertrophy featuring immature adult Leydig cells and higher intratesticular dihydrotestosterone and 5α-androstane 3α,17β-diol levels that are normally associated with pubertal development. Mature TgSCARH testes also exhibited markedly reduced Sertoli cell numbers (70%), although meiotic and postmeiotic germ cell/Sertoli cell ratios were twofold higher than normal, suggesting that elevated TgSCAR activity supports excessive spermatogenic development. Concurrent with the higher germ cell load of TgSCARH Sertoli cells were increased levels of apoptotic germ cells in TgSCARH relative to TgSCARm testes. In addition, TgSCARH testes displayed unique morphological degeneration that featured accumulated cellular and spermatozoa clusters in dilated channels of rete testes, consistent with reduced epididymal sperm numbers. Our findings reveal for the first time that excessive Sertoli cell AR activity in mature testes can reach a level that disturbs Sertoli/germ cell homeostasis, impacts focal Leydig cell function, reduces sperm output, and disrupts male fertility.


2015 ◽  
Vol 2015 ◽  
pp. 1-3 ◽  
Author(s):  
Michelle Ceci ◽  
Edward Calleja ◽  
Edith Said ◽  
Noel Gatt

True hermaphroditism represents only 5% cases of all of disorders of sexual differentiation (DSD) and usually present in early childhood with ambiguous genitalia. Occasionally, cases might present later on in adolescence with problems of sexual maturation. Our case report presents a true hermaphrodite with normal male phenotype that presented as a left testicular mass, two years after being diagnosed with Sertoli cell only syndrome in the contralateral testis. Histological examination of the left testis showed ovarian, fallopian tube, myometrial, endometrial, and epididymal tissue. This combination of findings is found in approximately one-third of true hermaphrodites, but it is very rare to present clinically as an inguinoscrotal mass.


Reproduction ◽  
2012 ◽  
Vol 143 (5) ◽  
pp. 663-672 ◽  
Author(s):  
Tomoko Kato ◽  
Michiyo Esaki ◽  
Ayami Matsuzawa ◽  
Yayoi Ikeda

The orphan nuclear receptor steroidogenic factor 1 (NR5A1 (SF-1)) is expressed in both Sertoli and Leydig cells in the testes. This study investigates the postnatal development of the testes of a gonad-specific Nr5a1 knockout (KO) mouse, in which Nr5a1 was specifically inactivated. The KO testes appeared histologically normal from postnatal day 0 (P0) until P7. However, disorganized germ cells, vacuoles, and giant cells appeared by P14 in the seminiferous tubules of KO but not control mice. Expression of NR5A1 and various factors was examined by immunohistochemistry (IHC). The number of NR5A1-positive Sertoli cells in the KO testes was lower compared with controls at all the developmental stages and decreased to nearly undetectable levels by P21. IHC for anti-Müllerian hormone and p27, immature and mature Sertoli cell markers, respectively, indicated a delay in Sertoli cell maturation in the KO testes. The number of Sertoli cell-expressing factors involved in Sertoli cell differentiation including WT1, SOX9, GATA4, and androgen receptor were lower in the KO testes compared with controls. Furthermore, fewer proliferating cell nuclear antigen-positive proliferative germ cells were observed, and the number of TUNEL-labeled cells was significantly higher in the KO testes compared with controls at P14 and P21, indicating impaired spermatogenesis. IHC for CYP11A1 (SCC) indicated the presence of steroidogenic Leydig cells in the interstitium of the KO testes at all stages examined. These results suggest that NR5A1 is essential for Sertoli cell maturation and therefore spermatogenesis, during postnatal testis development.


2010 ◽  
Vol 54 (8) ◽  
pp. 685-689 ◽  
Author(s):  
Cresio Alves ◽  
Zilda Braid ◽  
Fernanda Borchers Coeli ◽  
Maricilda Palandi de Mello

The XX male syndrome - Testicular Disorder of Sexual Differentiation (DSD) is a rare condition characterized by a spectrum of clinical presentations, ranging from ambiguous to normal male genitalia. We report hormonal, molecular and cytogenetic evaluations of a boy presenting with this syndrome. Examination of the genitalia at age of 16 months, showed: penis of 3.5 cm, proximal hypospadia and scrotal testes. Pelvic ultrasound did not demonstrate Mullerian duct structures. Karyotype was 46,XX. Gonadotrophin stimulation test yielded insufficient testosterone production. Gonadal biopsy showed seminiferous tubules without evidence of Leydig cells. Molecular studies revealed that SRY and TSPY genes and also DYZ3 sequences were absent. In addition, the lack of deletions or duplications of SOX9, NR5A1, WNT4 and NROB1 regions was verified. The infant was heterozygous for all microsatellites at the 9p region, including DMRT1 gene, investigated. Only 10% of the patients are SRY-negative and usually they have ambiguous genitalia, as the aforementioned patient. The incomplete masculinization suggests gain of function mutation in one or more genes downstream to SRY gene.


Author(s):  
William J. Kovacs

The testes are the source of both germ cells and hormones essential for male reproductive function. The production of both sperm and steroid hormones is under complex feedback control by the hypothalamic-pituitary system. The testis consists of a network of tubules for the production and transport of sperm to the excretory ducts and a system of interstitial cells (called Leydig cells) that express the enzymes required for the synthesis of androgens. The spermatogenic or seminiferous tubules are lined by a columnar epithelium composed of the germ cells themselves as well as supporting Sertoli cells surrounded by peritubular tissue made up of collagen, elastic fibers, and myofibrillar cells. Tight junctions between Sertoli cells at a site between the spermatogonia and the primary spermatocyte form a diffusion barrier that divides the testis into two functional compartments, basal and adluminal. The basal compartment consists of the Leydig cells surrounding the tubule, the peritubular tissue, and the outer layer of the tubule containing the spermatogonia. The adluminal compartment consists of the inner two-thirds of the tubules containing primary spermatocytes and germ cells in more advanced stages of development. The base of the Sertoli cell is adjacent to the basement membrane of the spermatogenic tubule, with the inner portion of the cell engulfing the developing germ cells so that spermatogenesis actually takes place within a network of Sertoli cell cytoplasm. The mechanism by which spermatogonia pass through the tight junctions between Sertoli cells to begin spermatogenesis is unknown. The close proximity of the Leydig cell to the Sertoli cell with its embedded germ cells is thought to be critical for normal male reproductive function. The seminiferous tubules empty into a network of ducts termed the rete testis. Sperm are then transported into a single duct, the epididymis. Anatomically, the epididymis can be divided into the caput, the corpus, and the cauda regions. The caput epididymidis consists of 8 to 12 ductuli efferentes, which have a larger lumen tapering to a narrower diameter at the junction of the ductus epididymidis.


2019 ◽  
Vol 18 (3) ◽  
pp. 67-70
Author(s):  
N. Antonakopoulos ◽  
D. Vrachnis ◽  
N. Loukas ◽  
Ch. Christodoulaki ◽  
Z. Iliodromiti ◽  
...  

Campomelic dysplasia is a rare and severe genetic condition that is characterized by shortening and bowing of the long bones, abnormal face, multiple congenital anomalies, and ambiguous genitalia. Having conducted a review of the existing literature on this rare genetic disorder, we herein present the most pertinent and essential data on the condition viewed from the clinical perspective. In the majority of cases when the neonate survives the condition, since the underlying cause is more often than not a de novo mutation of the SOX9 gene, there is no increased risk of recurrence. Diagnosis is tentatively made based on skeletal findings during routine prenatal ultrasound; it may subsequently be confirmed via either prenatal or postnatal molecular genetic testing or else radiologic evaluation. In general, the condition is considered to be lethal in the neonatal period, there is no prenatal treatment and pregnancy termination is an option.


Author(s):  
Rita Meyer ◽  
Zoltan Posalaky ◽  
Dennis Mcginley

The Sertoli cell tight junctional complexes have been shown to be the most important structural counterpart of the physiological blood-testis barrier. In freeze etch replicas they consist of extensive rows of intramembranous particles which are not only oriented parallel to one another, but to the myoid layer as well. Thus the occluding complex has both an internal and an overall orientation. However, this overall orientation to the myoid layer does not seem to be necessary to its barrier function. The 20 day old rat has extensive parallel tight junctions which are not oriented with respect to the myoid layer, and yet they are inpenetrable by lanthanum. The mechanism(s) for the control of Sertoli cell junction development and orientation has not been established, although such factors as the presence or absence of germ cells, and/or hormones, especially FSH have been implicated.


Sign in / Sign up

Export Citation Format

Share Document