scholarly journals Prospects for Use of Synchronous Reluctance Motors in Low-Power Electrical Devices

2015 ◽  
Vol 52 (2) ◽  
pp. 40-48 ◽  
Author(s):  
J. Dirba ◽  
L. Lavrinovicha ◽  
R. Dobriyan

Abstract This paper focuses on studying the synchronous reluctance motors as an alternative to low-power commutator motors. Analysis is done for the improved design of synchronous reluctance motor with a segmental external rotor. Relevant equations and a suitable method are proposed for calculating characteristics of the synchronous reluctance motors operating in a specific mode with electronic commutation as switched reluctance motors. It is concluded that synchronous reluctance motors in this mode can provide a wide range of characteristics and are quite competitive with commutator motors used in low-power devices.

2017 ◽  
Vol 50 (3) ◽  
pp. 261-270 ◽  
Author(s):  
Juan Chowdhury ◽  
Gaurav Kumar ◽  
Karuna Kalita ◽  
Kari Tammi ◽  
Sashindra K Kakoty

Switched reluctance motors have been extensively studied by researchers for their unparalleled advantages in wide range of applications. The linear versions of it, possessing similar attributes and prospects, have been developed in recent years. Owing to their frugal design, robust built and high force density, the linear switched reluctance motors (LSRM) has had significant stages of development and optimization. The flexibility in design and operation makes LSRM a prime contender for any linear motor-actuator application. This paper provides a bird’s eye view across its developmental stages and its various aspects in design, analysis and control. The following content discusses the salient points of research and the contribution by researchers in this field.


2021 ◽  
Vol 11 (7) ◽  
pp. 3102
Author(s):  
Md. Zakirul Islam ◽  
Seungdeog Choi ◽  
Malik E. Elbuluk ◽  
Sai Sudheer Reddy Bonthu ◽  
Akm Arafat ◽  
...  

The rare-earth (RE) permanent magnets (PM) have been increasingly adopted in traction motor application. However, the RE PM is expensive, less abundant, and has cost uncertainties due to limited market suppliers. This paper presents a new design of a RE-free five-phase ferrite permanent magnet-assisted synchronous reluctance motor (Fe-PMaSynRM) with the external rotor architecture with a high saliency ratio. In such architecture, the low magnetic coercivity and demagnetization risk of the ferrite PM is the challenge. This limits the number of flux barriers, saliency ratio, and reluctance torque. A precise analytical design procedure of rotor and stator configuration is presented with differential evolution numerical optimizations by utilizing a lumped parameter model. A 3.7 kW prototype is fabricated to validate the proposed idea.


Author(s):  
Nabil Farah ◽  
M.H.N. Talib ◽  
Jurifa Lazi ◽  
Majed Abo Ali ◽  
Z. Ibrahim

<p>Nowadays power electronics circuits are embedded to most of electrical application areas. This approached offers a great control mechanism with simple and easy circuit configuration. Switched Reluctance Motor (SRM) is one of the most recent apparatus which draws a great number of researchers’ interests. Previously several attempts are made to use the power converters as driver for SRM such as Voltage Source Inverter (VSI) and bridge converters. This paper presents an analysis study of three level inverter to control the SRM. The inverter is controlled using space vector modulation SVM. The aim of this paper is to report the use the multilevel inverter to be fed into the SRM. The implementation of the multilevel inverter is abl to reduce the Total Harmonics Distortion (THD). Performance comparison are made between the multilevel and previous power electronics circuits that applied to the SRM. The simulation results have been conducted by MATLAB/SIMULINK software.</p>


2013 ◽  
Vol 367 ◽  
pp. 405-410
Author(s):  
Guo Qing Li ◽  
Dean Zhao ◽  
Hui Jiang

To solve the strong coupling and nonlinear of switched reluctance motor (SRM) used in the Electric valve ,we use a fuzzy compound PID control method, and apply it to the switched reluctance motors speed control system.The simulation applys that this method combines the advantages of fuzzy control and PID control and is well applied to non-linears object.Based on the theory, we design the core to the outer loops speed feedback and inner current loops feedback system in TMS320F28335,and describe the specific hardware and software structure, morely verify the feasibilitys test. The theory can solve the problem that the traditional PID cannot meet the variation of the parameter from the electric valve.


Sign in / Sign up

Export Citation Format

Share Document